
Nikolaos Triantafyllou, Katerina Ksystra,

Petros Stefaneas and Panayiotis Frangos

Applying Algebraic Specifications on (Mobile)
Digital Right Management Systems

National Technical University of Athens

2011 Imperial College Computing Student

Workshop

29-30th September 2011

Birth of Mobile DRM
 Mobile phones have evolved

 No longer do they provide only voice services

 Technological advances like:

 Wider color screens

 More computational power

 3G networks

 Transformed mobile phones to mini personal computers

 This lead to content available only to personal computers before to

become available to the mobile end users

Birth of Mobile DRM
 The industry was afraid

 Piracy on internet

 Didn’t want to have it duplicated over the mobile environment

 The solution came in the name of Mobile Digital Rights

Management Systems (MDRMs)

 What are MDRMs really?

 More then a cryptographic protection of contents!!

Birth of Mobile DRM

• A form of Digital Copyright

• With the use of Licenses they enforce the

consumption of contents under a specific

set of rules

• Giving birth to new commercial models and

seller – buyer relations

DRM Languages
 On of the most important parts of a DRM system

is the Language in which the Licenses are written

in.

 Several have been proposed

 Most are XML based

 Some logically based

Open Mobile Alliance (OMA)
 An international organization with the purpose of

creating standards for the mobile environment

 Members of it are most of the major mobile

terminals producers and mobile services

providers

 In 2001 they began the creation of a MDRM

standard even before the birth of such a market

 In 2006 their second and more complete standard

was presented.

Open Mobile Alliance (OMA)
 The standard is separated in three specifications:

 OMA Rights Expression Language

 On for the communication protocols and the basic

architecture of the system

 On that describes the required format of the

contents

Need for verification
 Why do we need to have a verification for DRM

systems?

 DRM protected contents are a commodity

 Their success depends on the acceptance of the

market

 Products advertised to behave in one manner and

ending up behaving in another will lose fast the

confidence of the consumers

 Act in the best interest of the consumer as well as

the creator.

Our Approach
 Give OMA REL formal semantics

 Verify the algorithm involved in choosing what
license to use

 Redesign the algorithm

 Verify the new algorithm

 Hints to addressing interoperability

Behavioral Specification
 We are interested in specifying the Behavior

of a system

 With initial algebras we describe abstract
data types while with hidden, the states of an
abstract object

 There exist two kinds of data types:
 Visible sorts
 Hidden sorts

 There exist two kinds of operators for hidden
sorts:
 Action operators
 Observation operators

Behavioral Specifications
 In general a behavioral specification looks like:

The OTS method
 Observational transition systems, or OTSs are

mathematical models of (distributed) systems.

 A mathematical definition of the above concept

 A transition system written in terms of equations

The OTS method
 Assuming there exists a universal state space,

say Y

 An OTS S is a triplet <O, I, T>;

 O : A set of observation functions

 T : A set of transition functions.

CafeOBJ

 CafeOBJ algebraic specification language

 writing a formal model and reasoning about the model

 Not a programming language, is executable however

 Developed by the Japan Advance Institute of Science

 A part of the OBJ family

 Started by Joseph Goguen

 Other similar languages OBJ3, Maude, etc.

OTS in CafeOBJ
 They transferred in a natural way

 The system states are defined by a hidden sort

module

 Observers are denoted by observation operators

 Transitions by action operators

 We need to declare what the observers observe

after each transition is applied on an arbitrary

state

 What do they observe in the initial state

Abstract Syntax for OMA REL (need)

 DRM RELs on the run

 Cause lack of formal semantics

 Licenses used this moment may not implement

what the creator intended

Abstract Syntax for OMA REL
 Our answer;

 Create an abstract syntax for it

 Transfer it into CafeOBJ so as e-validation on

licenses can occur

 Example of syntax;
<o-ex:asset o-ex:id="Asset-1">

<o-ex:context>

<o-dd:uid>ContentID1</o-dd:uid>

</o-ex:context>

</o-ex:asset>

<o-ex:asset o-ex:id="Asset-2">

<o-ex:context>

<o-dd:uid>ContentID2</o-dd:uid>

</o-ex:context>

<o-ex:permission>

<o-ex:asset o-ex:idref="Asset-1"/>

<o-ex:asset o-ex:idref="Asset-2"/>

<o-dd:display/>

</o-ex:permission>

<o-ex:permission>

<o-ex:asset o-ex:idref="Asset-2"/>

<o-dd:print/>

</o-ex:permission>

: agreement

 about {ContentID1 ,ContentID2}

 with True or[P1 ; P2 ; P3]

agr

ContentID1

ContnentID2

ContentID2

P1 := True

2 : True

3: True int

where

display

P display

P pr

Abstract Syntax for OMA REL (3)
 Translation to CafeOBJ notation

eq aboutset = add (contentID2 , add (contentID1 , emuidset)) .

eq ps1 = add(True ==> contentID2 print , add(True ==> contentID2

display , add(True ==> contentID1 display , em-permset))).

eq TPS1 = add (True ~> ps1 , emtoppermset) .

eq agr1 = agreement-about (ebook) with (TPS1) .

<o-ex:asset o-ex:id="Asset-1">

<o-ex:context>

<o-dd:uid>ContentID1</o-dd:uid>

</o-ex:context>

</o-ex:asset>

<o-ex:asset o-ex:id="Asset-2">

<o-ex:context>

<o-dd:uid>ContentID2</o-dd:uid>

</o-ex:context>

<o-ex:permission>

<o-ex:asset o-ex:idref="Asset-1"/>

<o-ex:asset o-ex:idref="Asset-2"/>

<o-dd:display/>

</o-ex:permission>

<o-ex:permission>

<o-ex:asset o-ex:idref="Asset-2"/>

<o-dd:print/>

</o-ex:permission>

• Validation;

eq permissionSET = add (F (agr1, aboutset, emreset).

red Permitted(print , ebook , contentID2) in permissionSET .

Proof Score Method
 Using a CafeOBJ/OTS specification

 Prove properties;

 Invariant

 liveness

Proof Score Method
 In order to prove such a property several steps

need to be made :

1. Express the property in a formal way as a

predicate, say invariant pred(p,x),

2. In a module, usually called INV, pred(p,x) is

expressed in CafeOBJ

3. In a proof score we show that our predicate

holds at any initial state, say init.

4. We write a module, usually ISTEP, where the

predicate to prove in each inductive case is

expressed in CafeOBJ

Proof Score Method
5. For each transition we write the appropriate

proof score

6. If istep(x) is reduced to true, it is shown that the

transition preserves pred(p, x) in this case.

 Otherwise, we may have to split the case, may need

some invariants that will be used as lemmas (lemma

discovery),

 or we may show that the predicate is not invariant to

the system.

Order Rights Object Evaluation
 Only rights that are valid at the given time should

be taken into consideration
 Rights that are unconstrained should be preferred

over others
 Rights that contain a date-time constraint should be

preferred over other constrained rights
 In the case where multiple date-time constraints are

present the one with the nearest to the present,
<end> tag should be preferred

 If no date-time constraint is present the interval
constrained rights should be preferred over other
constraint rights

 Timed count constraint rights should be preferred
over count constraint rights

Unconstrained > Date time > Interval > Timed Count > Count

Verification of the Algorithm
 Following the above method the Specification for

the Algorithm as an OTS in CafeOBJ was created

 The desired property to prove was :

Whenever a license is chosen for a given

content, then the license is valid at that specific

time.

Verification of the Algorithm
No. Informal definition of Properties to be proven

1 Whenever a license is chosen for a given content, then the license is valid at that

specific time.

2 If a license L is the chosen license by the OMA Choice Algorithm for a given set S and that

license exits, i.e. is not nil then L belongs to the set S.

3 If the choice made by the OMA choice algorithm for the set R union S, where R is an arbitrary

license containing one usage right and S is a set of Licenses, is not R nor is it a choice made

solely on S then the chosen license is nil, i.e. not valid license is available

4 If the set of licenses contains only a single license, say L and the choice made by the OMA

Choice Algorithm is not nil, i.e. there exists a valid license, then the choice is this license L

5 If the choice made by OMA Choice Algorithm when the license set contains two licenses L and

L’ is not nil, and if the choice made is not that made based on the second license L’ then the

chosen license is L

Verification of the Algorithm
 Using the above lemmas all transitions where

reduced to true

 That concludes the verification for the initial

property

 For the verification to be sound we need to show

first that all the lemmas used are invariant as well

of course

 Those verifications where created in a similar

manner

A bug
 On the above algorithm consider we have the two

license;
 License 1; the owner can listen to songs A or B ten times

 License 2; the owner can listen to songs A or C one time before

the end of the month

 Request to listen to song A

 Loose the ability to ever listen to song C!!!!!

New algorithm to solve the problem

 This bug can occur when;

 “A license contains more than one permission elements and

after the execution it becomes depleted”

 We redesign the algorithm by adding labels to license

that state;
 The License becomes depleted after the execution of a right

 The License contains more than one permission elements

 The characterizing constraint based on the OMA constraint ordering

The new algorithm
1. Check the licenses installed on the mobile DRM

device for the ones matching the request of the user

2. See if any of these licenses falls into the special

case.

3. If all the matching licenses fit into that category use

the OMA Algorithm

4. If there exists a set of licenses that does not fall on

this special category use the OMA Algorithm on

them

5. Update the labels

Verification of the algorithm
 In order to prove that no loss occurs

 Introduce a coloring on permission

 Initially all permissions are white

 A permission gets colored black when;

 If it is the users request

 It is not the users request BUT it belongs to the

ONLY license containing it, and that license gets

depleted

Verification of the Algorithm
 Liveness property;

 If a right belongs to the installed licenses and is

colored white leads to it being colored black.

 Proof procedure different then invariant properties

 In a module write the deduction rules for, leads-to,

ensures, unless

 Using those rules break it into unless and ensure

predicates

Verification of the Algorithm
 Prove the ensure predicate (p ensure q)

 Unless case

 For all transitions (p(s) and ┐q(s)) → (p(s’) or q(s’)).

 Eventual case

 There exists a transition where; (p(s) and ┐q(s)) → q(s’)

 Prove the unless predicates
 Same as above

Verification
 Using the above the property;

eq lto(S, P) = ((color(S,P) = white) /\ (P /in allowed(S))) |-->

(color(S, P) = black) .

 Broken into two ensure properties
eq ens1(S , P) = (((makeReq(P) = useReq(S)) \/ (belong3?(makeReq(P) , find3(useReq(S) , best(S)))

 /\ (type3?(labelCP?(find3(useReq(S), best(S)))) = once) /\ (not(type3?(label?(find4(useReq(S)

, best(S)))) = once)) /\((# build2(useReq(S) , licIns(S),license(S)) == 1) \/ (possLic(S) = emptyLic) \/

 (finalLic(S) = emptyLic))) \/ (belong3?(makeReq(P) , skolem(P)) /\ (skolem(P) /inCP2

best(S) /\ ~(best(S) = emptyLic)) /\ (type3?(label?(find4(useReq(S) , best(S)))) = once) /\

 ((# build2(useReq(S) , licIns(S), license(S))== 1) \/ (possLic(S) = emptyLic)

 \/ (finalLic(S) = emptyLic))) /\ (P /in allowed(S))) ensures (color(S , P) = black) .

eq ens2(S ,P) = (((color(S , P) = white) /\ (P /in allowed(S)))) ensures (((makeReq(P) = useReq(S)) \/

 (belong3?(makeReq(P) , find3(useReq(S) , best(S))) /\

(type3?(labelCP?(find3(useReq(S), best(S)))) = once) /\ (not(type3?(label?(find4(useReq(S) , best(S)))) =

once)) /\ ((# build2(useReq(S) , licIns(S),license(S)) == 1) \/ (possLic(S) = emptyLic) \/

(finalLic(S) = emptyLic)))\/ (belong3?(makeReq(P) , skolem(P)) /\ (skolem(P) /inCP2 best(S) /\ ~(best(S) =

emptyLic)) /\ (type3?(label?(find4(useReq(S) , best(S)))) = once) /\ ((# build2(useReq(S) , licIns(S),

license(S))== 1) \/ (possLic(S) = emptyLic) \/ (finalLic(S) = emptyLic)))) /\ (P /in allowed(S))) .

First

ensure

property

Second

ensure

property

Interoperability problems
 Outside the mobile environment;

 Many different standards

 Many different RELs

 Result

 The do not work together;

 You buy one license on your mobile phone

 Cannot use it on your pc

Start of a project
 Using Theory of Institutions

 tries to capture the essence of the concept of

"logical system"

 An Institution I is defined as;

 A category Sign, the signature (names of sorts)

 A functor that takes us from Sign to the category of Sets,

and represents the sentences of our institution

 A functor that takes us from Sign to the Catop the models of

the institution

 And a satisfaction relation such that for each signature

morphism the satisfiability relation is preserved between the

models and sentences

The idea
 Using the above we could

 Define institutions for all RELs

 And the translation would be automated from

license to license (sentences) through institution

morphism

 While preserving the meaning of a license

 We have begun this work by defining an institution

for OMA REL

THANK YOU !
Questions??

