
Model-based Self-Adaptive 
Components: A Preliminary Approach 

Pedro Rodrigues, Emil Lupu  
 
Department of Computing 
Imperial College London 
 
 



Motivation 

•  Modern software systems are growing in terms of: 
»  scale 
»  complexity 
»  dynamicity 
»  heterogeneity 

•  Only Human management  
»  deficient dependability level 

 
•  Self-managing systems 

»  effective approach 

•  Model-based adaptation 
»  improves reliability 
»  enhances trust 



Background 



Background 

•  Monitoring 
»  Main metrics 

»  Fix set of metrics to monitor 
§  Detects 66% of faults with 30% of metrics 
 

»  Dynamic set of metrics to monitor 
§  Augment when a fault occurs 

»  Reduce power consumption 

»  Control monitor impact 
 
 



Background 

•  Decision-Making 
»  Event-Condition-Actions(ECA) Policies 
»  Goal Policies 
»  Utility-Function Policies 

»  Stitch Language 
§  Modified ECA Policies 
§  Tactics 

°  Condition 
°  Actions 

°  Expected behaviour 
§  Strategies 

°  General conditions 
°  Tree of Condition-Tactics 

°  Estimated time 
°  Next steps (in case of failure) 

 
 
 
 



Background 

•  Decision-Making 
»  Genetic algorithms 

§  Utility-Functions 
»  Planning algorithms 

§  Unpredicted states 
•  Component-Models 

»  Darwin 
§  Structural view 
§  Modes: behavioural extension 

»  FRACTAL 
§  Interfaces to reconfigure internal details 

°  Structure 
°  Behaviour 

»  MOCAS 
§  Behavioural view 

°  State machines 
°  Signal transitions 

 
 
 

 
 



Background 

•  Self-adaptation frameworks 
»  Rainbow 

§  Runtime architectural model: Acme ADL 
°  Components:  

°  Functional and non-functional annotation 
°  Expected interactions 

°  Architectural constraints 
§  Stitch language 

»  GRAF 
§  Runtime architectural model 
§  Model-based Adaptation 
 

 



Background - Summary 

Problems facing current approaches: 

•  Structural adaptation 

•  Centralised model 

•  Centralised decision-making 

•  Adaptation costs 

•  Behavioural adaptation 



Proposed Approach 

•  Overview: 
•  Components with self-managing capabilities 
•  Hierarchical structure 

•  Handle adaptation concerns at different levels 
•  Low-level: configuration parameters 
•  High-level: replace components 

•  Composite components manage their sub-hierarchy 
•  Components specify management level for parent component 

 

 
 
 



Proposed Approach 

•  Runtime Model 
»  Structural view 

§  Components: required and provided interfaces 
§  Non-functional annotations 

»  Behavioural model 
§  Interactions between interfaces 
§  Internal operations 

»  Incremental interfaces 
§  Behavioural evolution 

»  Relevant Metrics 
§  Dependencies 
§  Discretisation map 

 
 
 



Proposed Approach 

•  Adaptive Monitoring 
»  Type of value propagation 

§  Period-based 
§  Interval-based 

»  Set of monitoring metrics 
§  ECA policies to change set 

»  Updates annotations 

 
 
 



Proposed Approach 

•  Decision-Making 
»  Runtime model 
»  Policy Language 

§  Stitch based 
§  Expected outcome 
§  Cost estimation 

»  Utility-function for conflicting policies 

»  Planning for unpredicted states 
§  Coordination among components 
§  Decompose goals 

 
 
 



Final Remarks 

•  Hierarchical structure 
»  Handle management at different levels 
»  Ease management specification 

•  Online reasoning 
»  Increases trust 
»  Improves dependability 

 

•  Self-managing systems 
»  Reduce management costs 
»  Delegation of system-administrators 

 
 
 



 
 
 
 
 

Thank you 


