
Imperial College Computing Student Workshop 2011
(from a previous TAFA11 paper and a future AAMAS12 submission)

Conditional Labelling
for Abstract Argumentation

Guido Boella - University of Turin, Italy
Dov M. Gabbay - King’s College London, UK

Alan Perotti - University of Turin, Italy
Leendert van der Torre - CSC, University of Luxembourg

Serena Villata - INRIA Sophia Antipolis, France

TAFA11, -hopefully- AAMAS12

1 / 28

Introduction Context

Argument games / Dialogues

Agents debate about one (or more) topic(s), trying to defend it
(proponents) or defeat it (opponents) by adding new arguments to
the argumentation framework.

Agents take turns in building a framework (no retraction).

Easiest case: two agents (PRO,CON) argue about an argument a.

a(PRO)

2 / 28

Introduction Context

Argument games / Dialogues

Agents debate about one (or more) topic(s), trying to defend it
(proponents) or defeat it (opponents) by adding new arguments to
the argumentation framework.

Agents take turns in building a framework (no retraction).

Easiest case: two agents (PRO,CON) argue about an argument a.

a b(CON)

3 / 28

Introduction Context

Argument games / Dialogues

Agents debate about one (or more) topic(s), trying to defend it
(proponents) or defeat it (opponents) by adding new arguments to
the argumentation framework.

Agents take turns in building a framework (no retraction).

Easiest case: two agents (PRO,CON) argue about an argument a.

a b c(PRO)

4 / 28

Introduction Moves and goals

Moves and goals

A MOVE is the insertion of a new argument into the framework.

The GOAL is to have an argument accepted or rejected.

5 / 28

Introduction Moves and goals

Moves and goals

Select new argument to insert in framework

Recompute labels

Is topic IN
(/OUT?)

Modify framework

OK

NO

GOAL

}MOVE

6 / 28

Introduction Moves and goals

Moves and goals

Select new argument to insert in framework

Recompute labels

Is topic IN
(/OUT?)

Modify framework

OK

NO

GOAL

}MOVE

7 / 28

Introduction Research Question and Methodology

Research Question and Methodology

How to change an abstract argumentation framework, by
introducing new arguments and their associated attacks,
in order to have one or more arguments accepted or
rejected?

Given an argumentation framework, we elicit information
about the graph structure (such as paths and loops) and
use them to compute information about which
argument should be defeated in order to
defend/defeat the argumentation topic

8 / 28

Introduction Research Question and Methodology

Research Question and Methodology

How to change an abstract argumentation framework, by
introducing new arguments and their associated attacks,
in order to have one or more arguments accepted or
rejected?

Given an argumentation framework, we elicit information
about the graph structure (such as paths and loops) and
use them to compute information about which
argument should be defeated in order to
defend/defeat the argumentation topic

9 / 28

Introduction Research Question and Methodology

Research Question and Methodology

What kind of information can we associate to each
argument concerning its possible justification statuses
depending on the acceptability of other arguments in the
framework?
How to compute this information in an efficient way?

For each argument, we associate three conditional
labels to it, one for every possible justification status.
Given an argument and a justification status, the
conditional label tells which (other) arguments need to be
attacked in order to give the argument the desired
justification status.

10 / 28

Introduction Research Question and Methodology

Research Question and Methodology

What kind of information can we associate to each
argument concerning its possible justification statuses
depending on the acceptability of other arguments in the
framework?
How to compute this information in an efficient way?

For each argument, we associate three conditional
labels to it, one for every possible justification status.
Given an argument and a justification status, the
conditional label tells which (other) arguments need to be
attacked in order to give the argument the desired
justification status.

11 / 28

Introduction Language

Examples

Suppose that argument a is the topic and we want do defend it.
(that is, we want a to be labelled in.)

a b

c

d

Should we attack b? c? Both of them? Is our goal even admissible?
What if we can’t attack b? Can we still make an effective move?

12 / 28

Introduction Language

Conditional labels

Given an argument a:

a+ means make a in

a− means make a out

a? means make a undec

a◦ means defeat a

> means success

⊥ means failure

a b

c

d

a+ : b◦ ∧ c◦ ∧ d◦

a− : a◦(∨..)

a? : >

LABEL ::= HEAD : BODY

HEAD ::= ARGNAME+ | ARGNAME− | ARGNAME ?

BODY ::= ARGNAME◦ | > | ⊥ | BODY ∨ BODY | BODY ∧ BODY

13 / 28

Approach Overview

Approach: phases

1 associate each argument to three base labels (considering only
the argument’s direct attackers)

2 compute conditional labels by substitution

3 find target sets (for instance, by dnf-normalizing the formulae)

4 find a move such that it satisfies a target set of the goal formula.

14 / 28

Approach Local phase

1) Associate each argument to three base labels

a b

c

d

[Caminada ’06]

An argument is out if it has an attacker which is in

An argument is in if all of its attackers are out

An argument is undec if it has at least one undec attacker and no in
attacker

15 / 28

Approach Local phase

1) Associate each argument to three base labels

a+ =
∧

b s.t. (b,a)∈R

b−

in order to ensure a’s acceptance, all of a’s attackers must be out.

a− = a◦ ∨
∨

b s.t. (b,a)∈R

b+

in order to ensure a’s rejection, either a is defeated or one of a’s attacker is

accepted.

a? =

 ∨
b s.t. (b,a)∈R

b?

 ∧
 ∧

b s.t. (b,a)∈R

b− ∨ b?

in order to have an argument undecided, at least one of its attackers has to be

undecided and all of them must be out or undecided.

16 / 28

Approach Global phase

2) Compute conditional labels by substitution

a+ : b? ∧ c−

b? : c−∨ ⊥
⇒ a+ : (c−∨ ⊥) ∧ c−

b? : c−∨ ⊥

Basic substitution process

headi : bodyi headj : bodyj subf (headj , bodyi)

headi : bodyi [bodyj/headj]

17 / 28

Approach Global phase

2) Compute conditional labels by substitution

Simplification rules

> ∨ α > (you either do nothing or do α: doing nothing is more convenient)

⊥ ∨ α α (you can either fail or do α: in order to succeed you have to do α)

> ∧ α α (you have to both do nothing and α, therefore α)

⊥ ∧ α ⊥ (you fail and you have to do α: you still fail)

α ∧ α α

α ∨ α α

α ∨ (α ∧ β) α

α ∧ (α ∨ β) α

(compare to propositional connectives’ properties)

18 / 28

Approach Global phase

2) Compute conditional labels by substitution

a+ : b−∨ a−

c? : c? ∨d+

⇒ a+ : b−∨ ⊥
c? : > ∨d+

Termination rules

headi : bodyi headi ≡ arg± subf (arg±, bodyi)

headi : bodyi [⊥ /arg±]

headi : bodyi headi ≡ arg? subf (arg?, bodyi)

headi : bodyi [>/arg?]

19 / 28

Approach From formulae to moves

3,4) Find target sets and moves

Start with a conditional label (a◦ ∧ (b◦ ∨ c◦))

Bring it to DNF ((a◦ ∧ b◦) ∨ (a◦ ∧ c◦))

Get target sets ({{a, b}, {a, c}})

Find a move such that it modifies the framework according to a
target set.

20 / 28

Approach Preprocessing

Optimization and loop detection

The biggest challenge lies in substitution, because the substitution process
for each formula has the size of the framework as upper bound and the
same substitutions take place several times, especially in highly connected
frameworks.
A support for implementation can be a preprocessing phase of loop
detection:

a b

c

d

21 / 28

Example

[Example] 1) Associate each argument to three base labels

Again, suppose that we want to defend a.

a b

c

d

a+ : b−

b− : b◦ ∨ d+

d+ : c−

c− : c◦ ∨ b+

b+ : a− ∧ d−

for the sake of simplifications, only some labels are displayed.

22 / 28

Example

[Example] 2) Compute conditional labels by substitution

a+ : b−

b− : b◦ ∨ d+

d+ : c−

c− : c◦ ∨ b+

b+ : a− ∧ d−

a+ : b−

 a+ : b◦ ∨ d+ [substitution]

 a+ : b◦∨ c− [substitution]

 a+ : b◦∨ c◦ ∨ b+ [substitution]

 a+ : b◦ ∨ c◦∨ (a− ∧ d−) [substitution]

 a+ : b◦ ∨ c◦ ∨ (⊥ ∧ d−) [termination]

 a+ : b◦ ∨ c◦∨ ⊥ [simplification]

 a+ : b◦ ∨ c◦ [simplification]

23 / 28

Example

[Example] 3,4) Target sets and moves

DNF : b◦ ∨ c◦

Target Sets : {{b}, {c}}

a b

c

d

a b

c

d

24 / 28

Conclusions Summary

Summary

New kind of labelling for abstract argumentation

Plug-in for multiparty dialogues

Link from desired justification state of a goal to possible moves

Deal with graph topoi (loops, odd/even paths)

Loop detection (adjacency matrix powers) as preprocessing

25 / 28

Conclusions Future work

Ongoing work

[Boella, Villata, Van Der Torre](IJCAI 11)
Attack Semantics for Abstract Argumentation

We shift our focus onto arc successfulness

a b c

[Bonzon, Maudet](AAMAS 11)
On the Outcomes of Multiparty Persuasion

We adopt their framework and extend their protocol

We embed control (team’s ability to back up)

We use conditional labelling as a strategic, coalitional tool

26 / 28

Conclusions bibliography

References

Phan Minh Dung: On the Acceptability of Arguments and its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games.
Artif. Intell. (AI) 77(2):321-358 (1995).

Martin Caminada: On the Issue of Reinstatement in Argumentation. JELIA
2006: 111-123.

Guido Boella, Dov Gabbay, Alan Perotti, Leendert van der Torre, and Serena
Villata: Conditional labelling for abstract argumentation, to appear In Procs.
of the 1st Workshop on Theory and Applications of Formal Argumentation
(TAFA), 2011.

Elise Bonzon and Nicolas Maudet. On the Outcomes of Multiparty
Persuasion. In Proceedings of the 10th International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-2011), pp. 47–54,
May 2011.

Serena Villata, Guido Boella, Leon van der Torre: Attack Semantics for
Abstract Argumentation, 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), IJCAI/AAAI, p. 406-413, 2011.

27 / 28

Conclusions thanks

Thank you.

28 / 28

Conclusions Examples

Example: single loop

a

a+ :⊥

a− : a◦

a? : >

29 / 28

Conclusions Examples

Example: 2-step loop

a b

a+ : b◦

a− : a◦

a? : >

b+ : a◦

b− : b◦

b? : >

30 / 28

Conclusions Examples

Example: 3-step loop

a b c

a+ : >
a− : a◦

a? :⊥

b+ : a◦ ∧ c◦

b− : >
b? : a◦

c+ : >
c− : c◦

c? : a◦

31 / 28

Conclusions Loop detection example

Compute conditional labels by substitution

b

c fe

d

a

M1 a b c d e f

a 1 1 1 0 0 0
b 0 0 1 0 0 0
c 0 1 0 0 0 0
d 0 0 1 0 0 1
e 0 0 0 1 0 0
f 0 0 0 0 1 0

32 / 28

Conclusions Loop detection example

Compute conditional labels by substitution

b

c fe

d

a

M2 a b c d e f

a 1 1 1 0 0 0
b 0 1 0 0 0 0
c 0 0 1 0 0 0
d 0 1 0 0 1 0
e 0 0 1 0 0 1
f 0 0 0 1 0 0

33 / 28

Conclusions Loop detection example

Compute conditional labels by substitution

b

c fe

d

a

M3 a b c d e f

a 1 1 1 0 0 0
b 0 0 1 0 0 0
c 0 1 0 0 0 0
d 0 0 1 1 0 0
e 0 1 0 0 1 0
f 0 0 1 0 0 1

34 / 28

Conclusions Grammar and meaning

Language

HEAD ::= FORM
HEAD ::= ARGNAME+ | ARGNAME− | ARGNAME ?

FORM ::= ARGNAME ◦ | > | ⊥ | FORM ∨ FORM | FORM ∧ FORM

a+ : >
If your goal is to label a IN, you don’t have to do anything

a− : a◦ ∨ b+

If you want to label a out, either attack it directly or get b labeled IN

a? :⊥
you can’t label a UNDEC

35 / 28

	Introduction
	Context
	Moves and goals
	Research Question and Methodology
	Language

	Approach
	Overview
	Local phase
	Local phase
	Global phase
	From formulae to moves
	Preprocessing

	Example
	Conclusions
	Summary
	Future work
	bibliography
	thanks

