
AOP: From Revolution to
Evolution

Alex Muscar

University of Craiova, Romania

Context (I)

Developing complex distributed
systems using Multi-Agent Systems

Why agents?

Writing distributed systems is hard;
we need a higher level of abstraction

Context (II)

We’re going to look at this from a
programming language perspective

Quite a few agent languages

Jason, GOAL, MetateM, 2APL, 3APL,
CLAIM, ...

Common traits?

Highly domain specific, focus on
single agents and… they are all

written in Java

Common traits?

Highly domain specific, focus on
single agents and… they are all

written in Java

Common traits?

Highly domain specific, focus on
single agents and… they are all

written in Java

Common traits?

Highly domain specific, focus on
single agents and… they are all

written in Java

Important aspects

• Agents

• Organizations

• Environments

Important aspects

• Agents

• Organizations

• Environments

Agents

Concurrently executing entities with
asynchronous, reactive behavior

Single agent abstractions

Objects, Actors, Reactive Objects

Single agent abstractions

Objects, Actors, Reactive Objects

Important aspects

• Granularity: object
• Execution model: sequential

• Communication: sync
• Message ordering: strict

Single agent abstractions

Objects, Actors, Reactive Objects

Important aspects

• Granularity: actor
• Execution model: concurrent

• Communication: async
• Message ordering: no

Single agent abstractions

Objects, Actors, Reactive Objects

Important aspects

• Granularity: object
• Execution model: concurrent
• Communication: sync & async

• Message ordering: strict

Close, but no cigar

We’re still at the object level

Plans, not programs

Communicating event loops from the
E language

Communicating event loops

• Pending deliveries

• Turns

Communicating event loops

• Pending deliveries

• Turns

Pending deliveries (I)

Asynchronous message sends are
queued to be sent later and they

return promises

Pending deliveries (II)

Eliminate the risk of deadlocks
because plans don’t get interrupted

to wait for another plan

Communicating event loops

• Pending deliveries

• Turns

Turns (I)

Send a pending message, process
incoming messages serially and

execute synchronous calls

Turns (II)

By providing serializability the risk of
race conditions is eliminated

Important aspects

• Agents

• Organizations

• Environments

Prototypes

Simple and flexible

Prototypes

Simple and flexible

Prototypical delegation (I)

Objects pass messages to other
messages

Prototypical delegation (II)

Objects can „point” to other objects
(their prototypes)

Prototypical delegation (III)

When an object does not
„understand” a message it will

delegate it to its prototype

Prototypes

Simple and flexible

Flexibility

Changing an object’s prototype
changes its „capabilities”

Organization

Group common functionality in traits

Organization

Group common functionality in traits

Trait

Abstract and control common
behavior

Object capabilities

Traits can be seen as capabilities

Important aspects

• Agents

• Organizations

• Environments

Agents and Artifacts

Artifacts are generic bundles of
behavior that provide a usage

interface

Open issues (I)

Prototypes + object capabilities

Open issues (III)

(Partial) static typing?

Open issues (IV)

Actually write the language ^_^

Thanks

