A Dichotomy Theorem for the Classes W[P](C)

Björn Lellmann

Department of Computing - Imperial College London

ICCSW 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Motivation

Problem

Many NP-hard problems are solved efficiently in practice.

Ways of dealing with this:

- Average case complexity
- Parameterised complexity.

Parameterised Problems

Fix a finite alphabet Σ .

Definition A parameterised problem is a subset of $\Sigma^* \times \mathbb{N}$.

Example

MC(LTL) *Instance:* A finite Kripke structure \mathcal{K} , a state v of \mathcal{K} , an LTL-formula φ . *Problem:* Decide whether $\mathcal{K}, v \models \varphi$.

The problem $\operatorname{MC}(\mathsf{LTL})$ is decidable in time $2^{\mathcal{O}(|\varphi|)} \cdot ||\mathcal{K}||$.

Parameterised Problems

Fix a finite alphabet Σ .

Definition A parameterised problem is a subset of $\Sigma^* \times \mathbb{N}$.

Example

<i>p</i> -MC(LTL)	
Instance:	A finite Kripke structure ${\cal K}$,
	a state v of $\mathcal K$, an LTL-formula $arphi$.
Parameter:	Length of φ .
Problem:	Decide whether $\mathcal{K}, \mathbf{v} \models \varphi$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The problem *p*-MC(LTL) is decidable in time $2^{\mathcal{O}(|\varphi|)} \cdot ||\mathcal{K}||$.

A Parameterised Analogue of P

Notation

- n for length of input
- k for parameter

Definition

A parameterised problem is in the class FPT, if it is solvable by a deterministic Turing machine in time $p(n) \cdot f(k)$ for some polynomial p and computable f.

Example

The problem p-MC(LTL) is in FPT.

A Parameterised Analogue of NP

Definition

A parameterised problem is in the class W[P] if it is solvable by a nondeterministic Turing machine in time $p(n) \cdot f(k)$ with only $\log n \cdot h(k)$ nondeterministic bits for some polynomial p and computable f and h.

Example

The problem

<i>p</i> -WSAT(CIRC)		
Instance:	A boolean circuit and $k \in \mathbb{N}$.	
Parameter:	<i>k</i> .	
Problem:	Decide whether the circuit is satisfiable by a valuation with weight k .	

is in $\mathrm{W}[\mathrm{P}].$

Parameterised Reductions And Completeness

Definition

Let P and Q be parameterised problems. A mapping

 $R: \Sigma^* \times \mathbb{N} \to \Sigma^* \times \mathbb{N}$ is an *fpt*-reduction from *P* to *Q* iff

- For all inputs (x, k): $((x, k) \in P \Leftrightarrow R(x, k) \in Q)$
- ► R is computable in time p(n) · f(k) for a polynomial p and a computable f
- There is a computable g such that if R(x, k) = (x', k'), then $k' \leq g(k)$.

Definition

A parameterised problem Q is W[P]-complete if it is in W[P] and every problem in W[P] is *fpt*-reducible to it.

Characterising the Intractable Problems with Circuits

Fact The problem

<i>p</i> -WSAT(<i>CIRC</i>)		
Instance:	A boolean circuit and $k \in \mathbb{N}$.	
Parameter:	<i>k</i> .	
Problem:	Decide whether the circuit is satisfiable by a	
	valuation with weight k.	

is W[P]-complete.

Question

What happens, if the circuits use other than the boolean connectives?

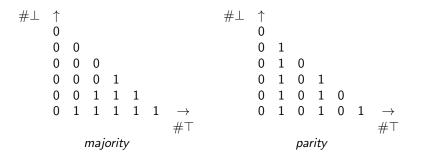
Generalizing the Boolean Connectives

Definition

A connective is a ptime-computable function $C : \mathbb{N} \times \mathbb{N} \to \{0, 1\}$.

Example

Visualisation of the *majority* and *parity* connectives:



The Classes W[P](C)

Let $\ensuremath{\mathcal{C}}$ be a class of connectives.

p-WSAT(CIRC)(C)		
Instance:	A circuit, whose gates are labelled with	
	connectives from \mathcal{C} , and $k \in \mathbb{N}$.	
Parameter:	<i>k</i> .	
Problem:	Decide whether the circuit is satisfiable by a valuation with weight k .	

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Definition

A parameterised problem is in the class W[P](C) if it is *fpt*-reducible to the problem *p*-WSAT(CIRC)(C).

A Dichotomy Theorem

Theorem Let C be a class of connectives. Then

 $W[P](\mathcal{C}) = W[P]$ or $W[P](\mathcal{C}) = FPT$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Dichotomy Theorem

Theorem Let C be a class of connectives. Then

$$W[P](\mathcal{C}) = W[P]$$
 or $W[P](\mathcal{C}) = FPT$.

Idea of Proof

Fact Let C be a class of connectives. Then

 $\mathrm{FPT} \subseteq \mathrm{W}[\mathrm{P}](\mathcal{C}) \subseteq \mathrm{W}[\mathrm{P}].$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

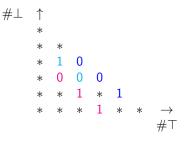
A Dichotomy Theorem

Theorem Let C be a class of connectives. Then

$$W[P](\mathcal{C}) = W[P]$$
 or $W[P](\mathcal{C}) = FPT$.

Idea of Proof

If C can simulate at least two of the boolean connectives \land , \lor , \neg , then W[P](C) = W[P], otherwise W[P](C) = FPT.



Summary

- Problems intractable in the classical sense may be tractable in the parameterised sense (in FPT)
- ► The class W[P] of problems intractable in the parameterised sense is characterised in terms of boolean circuits

- ▶ Generalising the boolean connectives yields the classes W[P](C)
- The classes W[P](C) equal W[P] or collapse to FPT.

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @