Reduction of Variability in Split—Merge Systems

Iryna Tsimashenka and William Knottenbelt

Imperial College London, 180 Queen’s Gate,
London SW7 2AZ, United Kingdom,
Email: {it09,wjk}@doc.ic.ac.uk

Abstract. We consider an optimisation problem applicable to systems
that can be represented as split—merge queueing networks with a limited
buffer space for processed subtasks. We assume Poisson arrivals and gen-
erally distributed service times. The proposition is to reduce variability
in terms of the difference in the times of arrival of the first and last sub-
tasks in systems where the release times of the subtasks can be controlled.
This stands in contrast to the overwhelming majority of research which
is focused on reduction of mean response time or percentiles of response
time. We formally define our notion of variability in split—merge systems
and construct an associated cost function and optimisation problem. For
two case studies we use simulation to explore the optimisation landscape
and to solve the associated optimisation problem.

1 Introduction

Performance analysis has acquired increased importance due to the growing com-
plexity of automated systems. Performance modelling enables an understanding
of the relationships between system workload, control parameters and key met-
rics such as customer response time, system utilisation and buffer occupancy. For
systems that involve the flow and processing of customers and resources, queue-
ing models are an appropriate formalism. Optimisation of control parameters
allows to minimise, for example, mean response time within given constraints [2].

It has been observed in a recent paper related to the scheduling of Map-
Reduce jobs in clusters that delayed scheduling of jobs can counterintuitively
lead to greater fairness and a higher level of data locality [§]. In another research,
delay scheduling was applied in the context of Quality of Service in networks [6].
Specifically, adding delays to input packets results in shaping the traffic such
that packet interarrival times follow an exponential distribution. This construc-
tion permits the analysis and optimisation of the network with mathematically
tractable Markovian models.

In this paper we show that adding judiciously chosen deterministic delays to
subtask processing in split—merge systems can result in a reduction of variability
in terms of time difference between the completion of the first and last subtasks
in a job. At the same time, corresponding beneficial effects on output buffer
occupancy are observed.

A major application area of our approach is automated warehouse systems
[7], where partially completed subtasks need to be held in a physical buffer

Andrew V. Jones (Ed.): Proceedings of the 1°° Imperial College Student Workshop (ICCSW ‘11),
pp. 101 September 29°"-30'" 2011, London UK.



102 Iryna Tsimashenka, William Knottenbelt

space. Another application field of this technique is parallel computing where it is
sometimes desirable to minimise mean synchronisation time between tasks [5]. In
healthcare systems, we can minimise the time patients wait for results following
treatment [I]. Lastly, in project scheduling we can reduce mean slack time [9].

The remainder of this paper is organised as follows. Section [2] presents back-
ground material relating to split-merge systems. Section [3| presents a formal def-
inition of variability, an associated cost function, and a simple simulation-based
optimisation methodology. Section [ illustrates the application of the methodol-
ogy in the context of two case studies. Section [p] concludes and considers avenues
for future work.

2 Background

As shown in Fig. [} a split-merge system consists of a queue of waiting tasks
(assumed to arrive according to a Poisson process with mean rate \), a split point
at which tasks split into subtasks, several (potentially) heterogeneous servers
(assumed to process subtasks according to a general service time distribution
F;(t) with mean service time 1/u;), a buffer for completed subtasks (the merge
buffer) and a merge point.

i '@
/
!

Spit

i, \
3 Paint, r:':'[:f
gl O 5|
: II.'"I

'-l

\

Fig. 1. Split—-Merge queueing model.

When all subtask servers are idle and the task queue is not empty, a task is
taken from the head of the task queue. This task splits into NV subtasks at the
split point. Each subtask server then processes its allocated subtask. Outgoing
subtasks join the merge buffer. When all subtasks belonging a task are present
in the merge buffer; the task exits the system via the merge point.



Reduction of Variability in Split—-Merge Systems 103
3 Variability in Split—Merge systems

We define the variability of a split—merge system as the mean difference in time
between the arrival of the first and last subtasks (belonging to each task) in the
merge buffer. Our challenge is to control this variability via the introduction of
a vector of delays:

d=(d1,doy...,d;,...,dp_1,dy) (1)

Here element d; of the vector represents the deterministic delay that will be
applied before a subtask is sent to server ¢ for processing.
We further define the cost function of a split-merge system for a given delay
vector d as:
C(d) = B(X) - E(Y) @)

where X is the random variable denoting the maximum completion time across
all subtasks (arising from a particular task), and Y is the random variable de-
noting the minimum completion time across all subtasks.

Assuming that subtasks at server ¢ are served independently with service time
sampled from a distribution function F;(t), then, taking into account the delay
that is applied before each subtask begins processing, X will have cumulative

distribution function:
n

Fx(t)~ [ Fite - ) 3)
i=1
Here it is assumed, for all 4, that F;(t — d;) = 0 for all ¢ < d;. Similarly, ¥ has
cumulative distribution function:

n

Be(t)~[[E—d) (4)

i=1

For a given split-merge system, our challenge is to find that vector d which
minimises C(d). To constrain the solution space while avoiding unnecessary
delays to overall mean task processing time, we set d; = 0 for the subtask
server(s) with the largest mean service time. We will denote the resulting vector
of optimal delays as:

a: (dvlac/i/?a"'acfi;—hovgi-‘rlv"'7Jn—17dn) (5)

We note that minimising C' results in minimum merge buffer utilisation in
the split-merge system. This property is particularly relevant in physical systems
(e.g. warehouses of major online retailers), which are often constrained in terms
of the amount of physical output buffer space available.

Although it is our ultimate goal to establish an efficient analytical procedure
for determining d, in the present paper we apply a simple simulation-based
methodology — based on extensions to the JINQS queueing network simulation
package [3] — to explore the shape of the cost function landscape and hence to

find (near-)optimal solutions for d.



104 Iryna Tsimashenka, William Knottenbelt

4 Numerical Results

Case Study 1
Consider a split-merge system with 3 service nodes having the following service

time distributions: Uniform(2,3), Pareto(3,1) and Det(5). The latter has the
highest expectation, so its optimal delay is set to 0 in d from Eq. |5} By the
simulation-based algorithm outlined at the end of the previous section, we find

the vector of optimal delays to be:
d = (2.5317,3.7154, 0.0) (6)

Fig. [2| displays the CDFs of the service times of the servers before and after

application of the optimal delays. Fig. 3| shows how C(d) depends on delay!
added to the Uniform distribution and delay2 added to the Pareto distribution.

1 T T T 1 7

| Uniform(2,3) —— Uniform(2,3) ——

| Pareto(3,1) | Pareto(3,1)
Deterministic(5) —— | 08 L | Deterministic(5) —— |

0.8 |
|
|

0.6 |
|
|

Case Study 2

Fig. 2. CDFs of server service times before and after adding the optimal delays.

Similarly, we show results for optimal delays in a split—-merge system with service
time distribution functions: Det(5), Erlang(6,1/3), Exp(2). Here the vector of

(7)

optimal delays is as follows:
d = (11.9386, 0.0, 16.5880)

Fig. [ displays the CDFs of the service times of the servers before and after

application of the optimal delays.
Fig. [5|shows how C'(d) depends on delay! added to the Deterministic distri-

bution and delay2 added to the Exponential distribution.



C(d)

0.8

0.6

0.4

0.2

Reduction of Variability in Split—-Merge Systems

delayl

Fig. 3. Surface plot of cost function against delays.

7 T
[ Erland(2,6) ——

| Exp(2) ——
L Det(5) —— | 0.8
|

|
i 4 0.6
T - 0.4
|> 4 0.2

I 1 ]

[} 30 40 50

C(d)
min C(d)

105

+

Erland(2,6) ——

Exp(2) ——

Det(s) —— |

50

Fig. 4. CDFs of server service times before and after adding the optimal delays.



106 Iryna Tsimashenka, William Knottenbelt

Cld)
C minC{d) +
C(d)
20
18
16
14
delay 2

20
0 5 10
delay 1

Fig. 5. Surface plot of cost function against delays.

In both cases we note the optimal delays take on different values to those
one might intuitively expect (e.g. by subtracting the mean response time of each
server from the maximum mean service time).

5 Conclusions and Future Work

This paper has considered the problem of introducing delays into the processing
of subtasks in split-merge systems in order to reduce the variability of overall
task processing time (and thereby merge buffer occupancy). We have illustrated
the use of a simple simulation-based methodology for finding optimal delays in
the context of two case studies.

There are several directions in which this work can be extended. Firstly, con-
current parallel generation of the cost function landscape across several comput-
ers — with a good corresponding speedup — should be simple to achieve given the
embarrassingly parallel nature of the problem. Secondly, it would be interesting
to explore if it is possible to find an efficient analytical procedure for determining
the vector of optimal delays. It may be that it is necessary to restrict the form
of service time distribution functions that can be supported (e.g. requiring that
they be continuous). Finally, we intend to investigate the analogous optimisa-
tion of a type of less synchronised parallel processing system, namely fork-join
systems [4]. The latter have ready application to the modelling of RAID and
other computing systems.



Reduction of Variability in Split—-Merge Systems 107

References

1. S. W. M. Au-Yeung. Response Times in Healthcare Systems. PhD thesis, Imperial
College London, January 2008.

2. G. Bolch. Queueing Networks and Markov Chains: Modeling and Performance Eval-
uation with Computer Science Applications. John Wiley & Sons, Inc., 2006.

3. A. J. Field. JINQS: An Extensible Library for Simulating Multiclass Queueing
Networks. Imperial College London, August 2006.

4. P. G. Harrison and S. Zertal. Queueing Models with Maxima of Service Times. In
Computer Performance Evaluations, Modelling Techniques and Tools. 13th Inter-
national Conference, TOOLS 2003, Urbana, IL, USA, September 2-5, 2003, volume
2794, pages 152-168, September 2003.

5. J. C. S. Lui, R. R. Muntz, and D. Towsley. Computing performance bounds of fork-
join parallel programs under a multiprocessing environment. IEEE Transactions on
Parallel and Distributed Systems, 9(3):295 311, 1998.

6. D. C. Reeve. A New Blueprint for Network QQoS. PhD thesis, Computing Laboratory,
University of Kent, Canterbury, Kent, UK, August 2003.

7. R. Serfozo. Basics of Applied Stochastic Processes. Springer, 2009.

8. M. Zaharia, D. Borthakur, S. Sen, K. Elmeleegy, S. Shenker, and I. Stoica. Delay
scheduling: a simple technique for achieving locality and fairness in cluster schedul-
ing. In Proceedings of the 5th European Conference on Computer Systems, EuroSys
’10, pages 265278, New York, NY, USA, 2010. ACM.

9. J. Zhao, M. M. Dessouky, and S. T. S. Bukkapatnam. Optimal slack time for
schedule-based transit operations. Transportation Science, 40(4):529-539, 2006.



	Reduction of Variability in Split--Merge Systems
	Introduction
	Background
	Variability in Split--Merge systems
	Numerical Results
	Conclusions and Future Work


