
Model-based Self-Adaptive Components: A
Preliminary Approach

Pedro Rodrigues and Emil Lupu

Department of Computing, Imperial College London, UK

Abstract. Due to the increasing scale, complexity, dynamicity and het-
erogeneity of modern software systems, it is not feasible to solely rely
upon human management to guarantee a good service level with such
availability demand. Self-managing systems are needed as an effective
approach to deal with those issues by exploiting adaptive techniques
to adjust a system. On top of that, model-based adaptation improves
reliability, hence enhancing trust in self-managing systems. However, a
centralised approach can be too complex to manage thus compromising
system dependability. This paper presents a preliminary decentralised
approach on model-based self-adaptive components.

1 Introduction

Self-management can be decomposed in various functions, as identified by IBM
[1] as the MAPE-K loop: Monitoring, Analysis, Planning and Execution, all
underpinned by system knowledge. The Monitoring service supervises the system
and notifies system changes. The Analysis service receives these notifications
and analyses system consistency as well as optimality, and sends a request to
the Planning service to change the system when the system is not behaving
as expected. The Planning service decides which changes have to be made and
passes them to the Execution service to apply them.

To the best of our knowledge, most proposals in self-adaptive system are
based on centralised management and a centralised model of the system. Cen-
tralised control of the details of all components in a system implies great com-
plexity since adaptation concerning different levels of a system is dealt at the
centralised manager; does not allow components to be completely autonomous
and limits the reusability of management specifications concerning one compo-
nent in other systems. Moreover, adaptation actions mainly focus on structural
modifications, such as replacing components, hence not dealing with behavioural
modifications.

In this paper we present a preliminary approach for the design of self-managing
system composed of autonomous components for pervasive environments. The
assumptions of systems administrators regarding adaptation action effects may
not be verified at runtime. However, little work has been conducted on online
reasoning about adaptation repercussions in terms of its outcome and costs.

This paper is organised as follows. Section 2 presents some of the relevant
proposals regarding the services of the MAPE loop. Section 3 discusses our

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 73–79. September 29th–30th 2011, London UK.



74 Pedro Rodrigues, Emil Lupu

preliminary proposal for the design of composite autonomous components based
on model-based adaptation. Section 4 ends this paper with closing remarks.

2 Background

This section discusses some proposals for the main concepts regarding self-
managing systems. Monitoring is the foundation service of these systems as
it provides online knowledge on system state. Relying upon that knowledge,
decision-making services verify the need for adaptation and decide the most suit-
able adaptation action. Component models provide means for the specification
of component structure and behaviour, which may support the decision-making
service. Finally, self-adaptation frameworks combine those concepts to add self-
managing properties to software systems.

2.1 Monitoring

A self-adaptive monitoring service should control the detail of collected moni-
toring data from sensors in the following manner: supervising main component
metrics while the component fulfils its requirements and switching to more de-
tailed monitoring when the system deviates from its normal behaviour. In this
regard, an automated method for selecting a subset of metrics to be collected
in the context of correlation-based monitoring was proposed in [11], resulting in
detecting on average 66% of faults in case of all metrics were being connecting,
though collecting only 30% of them. Alternatively, in the approach presented
in [12] when an anomaly is detected the monitoring level is progressively in-
creased until a fault root is found or the monitoring level achieved its maximum.
These techniques allow to reduce power consumption while not compromising
fault diagnosis accuracy.

2.2 Decision-Making

The decision-making service is responsible for choosing the most suitable adapta-
tion action to be executed in face of a context or state change. Policies have been
a successful way of expressing automated management of distributed systems and
changes in the system behaviour at runtime [14]. While Event-Condition-Actions
(ECA) policies express reactive actions based on the current system state, Goal
and Utility-function policies express desirable system states.

The Stitch language [5] proposes a modification to ECA policies based on two
constructions: tactics and strategies. Tactics implement the Condition-Action
part and introduce a construct to indicate the expected behaviour of the tactic
actions. Strategies are defined as a tree of Condition-Tactics nodes which define
a condition for the tactic to be applied, an estimation of the time it needs to
adapt the system and a list of conditional branches that define the following
steps in the tree.



Model-based Self-Adaptive Components: A Preliminary Approach 75

Alternatively, the application of genetic algorithms is proposed in [13] to de-
termine the best configuration of a system in face of state or context change.
However, it takes a considerable amount of time to compute the most fitting
system configuration, as a considerable number of possible configurations is ex-
plored.

2.3 Component Models

The component model in Darwin [10] specifies component structural view in
terms of required and provided services (ports) and component interactions
through bindings between provided and required ports. A composite component
defines bindings among internal components ports as well as binding the compos-
ite component ports to the ones of internal components. Although, a FRACTAL
component [3] is also based on the principle of provided and required interfaces,
each component is involved in a membrane that provides external control inter-
faces to introspect and reconfigure the component internal details, and a content
that consists in a set of sub-components. The membrane control interfaces nor-
mally correspond to several controller and interceptor objects.

The above component models mainly focus on providing means for structural
adaptation. Modes [9] extend the Darwin component model with a representa-
tion of the expected interaction behaviour between required and provided ser-
vices. Each of the identifiable component states is defined as a behaviour type
that is characterised by an interaction process, constrains and properties. The
interaction process is represented by Finite State Processes that define a set of
scenarios in which the component can operate. This representation can be used
to construct a Labelled Transition System, which can then be passed to the
LTSA toolset to detect the presence of deadlocks and other properties analysis.
On the other hand, the MOCAS model [2] only focuses on behavioural adap-
tation. Each component sets a UML state machine at runtime to characterise
and realise its behaviour. This state machine consists in a set of states which are
connected through transitions, each one being designated by an input signal, a
guard (a boolean expression) and effects. A state also includes invariants, that
together with guards designate business properties.

2.4 Self-Adaptation Framework

The Rainbow framework [7] relies upon Acme ADL [8] as a generic architec-
tural model to manage a given system. Each component can be annotated with
functional and non-functional properties, expected interactions with other com-
ponents and specific architectural constraints. Furthermore, the framework uses
the Stitch language [5] to express adaptation policies, which are triggered by rea-
soning over the architectural model. However, the adaptation actions are directly
applied to the underlying software system.

The GRAF framework [6] proposes using a runtime abstract model between
the adaptable software and the adaptation manager, where the adaptation man-
ager does not directly control the adaptable software. The Runtime Model Man-



76 Pedro Rodrigues, Emil Lupu

ager evaluates the pre-conditions of the adaptation policy before applying adap-
tation actions on the runtime model. Thereafter, the conducted modifications are
validated using the policy post-conditions as well as the model invariants. If they
do not conform with such constraints the Runtime Model Manager rollbacks the
alterations performed on the Runtime Model.

Both frameworks rely upon a centralised representation of the system as
well as centralised management, which can result in significant management
complexity.

2.5 Summary

Centralised representation and management of a software system can become
too complex that may overwhelm the benefits of having a self-managing system,
while restricting the design of autonomous components. Dealing with adaptation
concerning different levels of the software system at a centralised management
may compromise system dependability. On the other hand, minimising the set
of metrics of online monitoring and analysis reduces the complexity of system
management while minimising power consumption. Furthermore, work on online
reasoning on behavioural and runtime changes is insubstantial, limiting the trust
in self-managing systems as well as their autonomy.

3 Model-based Self-Adaptive Component

We propose that each component has self-managing capabilities in order to re-
duce the complexity of specifying the underlying mechanisms for autonomous
system management. A system is structured as a hierarchy of component compo-
sitions, i.e. single components can be used to construct a composite one which
in turn can be used in other composite relationship. The resulting composite
component is responsible for the management of its sub-components, though
their internal details are managed by themselves. Each component defines the
level of management details a parent component is allowed to control. The hi-
erarchical structure provides means to handle adaptation concerns at different
levels. The underlying mechanisms and models of self-adaptive components will
be presented in the next sub-sections.

3.1 Runtime Model

Similar to the GRAF framework [6] we propose that a component comprises a
Runtime Model which incorporates a structural and a behavioural view. The
structural view consists in a ADL specification of its provided and required
services, annotated with some properties, e.g. requirements and capabilities. For
instance, a given service provides an average response time of 500ms; a service
client requires a service provider with 10Mbps of available bandwidth for a file
transfer service, etc. The behavioural view represents the behavioural model of
its provided services and internal details. Moreover, the set of provided services



Model-based Self-Adaptive Components: A Preliminary Approach 77

can be dynamically evolved in order to accommodate new functionality or replace
existing one in face of a change in system requirements.

Furthermore, each component provides a list of relevant metrics to be mon-
itored along with the dependencies among them. Such information can be ex-
ploited by the aforementioned techniques to reduce monitoring complexity when
the component is behaving properly. In addition, based on the values of those
metrics, utility functions can be specified to evaluate the system. The domain
of each metric can be discretised in order to reduce the complexity of specifying
utility functions, e.g. response time ∈ [0, 100]ms→ low, ]100, 500]ms→ medium,
]500,∞[→ high.

Finally, the Runtime Model includes a set of functional and non-functional
requirements, structural and behavioural invariants and goals, that guide the
decision-making service when choosing a suitable adaptation action.

3.2 Adaptive Monitoring

For each of the relevant metrics specified in the component’s description a con-
figuration determining the type of monitoring, interval or period based, and the
correspondent parameters is specified. For period-based monitoring, the met-
ric’s value is periodically propagated based on a specified interval. When using
interval-based monitoring, the metric value is propagated when it falls outside a
specified numeric interval. Such parameters as well as the set of currently moni-
tored metrics are dynamically adapted using reactive policies based on the moni-
tored values and the dependencies among metrics to reduce power consumption.
For example, when the number of clients exceeds a given threshold, increase the
monitoring rate of system response time; stop monitoring available bandwidth
when the system response time is below 100ms. Moreover, the monitoring com-
ponent is also responsible for updating the aforementioned annotations on the
structural model.

3.3 Decision-Making

Each component applies its adaptation actions relying upon the current view
of its behavioural and structural models. Therefore, the monitoring component
updates those two models instead of directly propagating metrics values to the
decision-making service. Based on the Stitch language [5], we suggest adapta-
tion actions to be specified using ECA policies, each one including an expected
outcome of its adaptation actions in terms of structural and behavioural modi-
fications as well as metric variations and an estimation of the cost of applying
those actions.

By reasoning over the runtime behavioural model, the decision-making ser-
vice verifies which ECA policies need to be activated. If two or more policies
are triggered, the decision-making service applies an utility function to the ex-
pected outcome and the cost estimation; the one with the highest utility value
is selected. However, the adaptation actions are firstly executed in the runtime



78 Pedro Rodrigues, Emil Lupu

behaviour model in order for the decision-making service to verify if their execu-
tion violates components goals, invariants or requirements. If the simulation of
the adaptation actions does not lead the runtime model to an inconsistent state,
the modifications are applied in the component; otherwise the runtime model
is rollbacked to the previous state before simulating the ECA policy execution.
Moreover, after the execution of an ECA policy the expected outcome and cost
estimation are updated using a suitable statistic method based on the metrics
values captured by the monitoring service. Alternatively, statistical models can
be used to predict the outcome of a given adaptation action, using collected
values to improve prediction [4].

When a goal, an invariant, a functional or non-functional requirement is
invalidated and there is not an ECA policy to fix the identified problem, a plan
is generated using the estimation, evaluation or prediction of the outcome of
actions in ECA policies. The Runtime Model is used to validate the generated
plan, i.e. if the plan does not violate the aforesaid components requirements,
goals and invariants. The planning algorithm can be parameterised to generate
a plan as quick as possible or an optimal one using utility functions. Additionally,
utility-functions can also be used to periodically improve system configuration
parameters or structural configuration, i.e. sub-components replacement on a
composite relationship. Since adaptation can imply a significant cost in terms of
system availability, optimisation can be conducted only when the system utility
is below a given threshold.

4 Final Remarks

Self-managing systems should be designed as a hierarchy of self-adaptive com-
posite components to ease their specification and to provide means for manage-
ment at different levels while allowing to reuse components and their managing
features in similar systems. Online reasoning on structural and behavioural adap-
tation repercussions can improve the reliability of self-managing systems, as well
as increase the confidence of systems administrators towards such systems.

In this paper we have presented a preliminary design to approach the afore-
mentioned drawbacks of current self-managing systems. We intend to elaborate
on each one of the presented services and combine them to design systems of
self-managing components for pervasive scenarios. The main goal of deploying
self-managing systems is to decrease managing costs by reducing human inter-
vention. One one hand, such goal cannot be achieved if the underlying mecha-
nisms of self-managing systems do not have the level of reliability so that sys-
tem administrators can truly trust them to perform their job. On the other
hand, self-managing systems do not completely replace the role of system ad-
ministrators, i.e. leading to completely autonomous management, as the actions
performed by self-managing systems are governed by high-level goals specified
by system administrators. Consequently, system administrators still have the
control of software systems, only delegating system management to the self-
managing frameworks.



Model-based Self-Adaptive Components: A Preliminary Approach 79

Acknowledgements

This work was supported by Fundação para a Ciência e Tecnologia under the
grant SFRH/BD/73967/2010.

References

1. An Architectural Blueprint for Autonomic Computing. June 2006.
2. C. Ballagny, N. Hameurlain, and F. Barbier. Mocas: A state-based component

model for self-adaptation. In Proceedings of the 2009 Third IEEE International
Conference on Self-Adaptive and Self-Organizing Systems, SASO ’09, pages 206–
215, Washington, DC, USA, 2009. IEEE Computer Society.

3. E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-B. Stefani. The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper., 36:1257–1284, September 2006.

4. O. Celiku, D. Garlan, and B. Schmerl. Augmenting architectural modeling to cope
with uncertainty. In Proceedings of the International Workshop on Living with
Uncertainties (IWLU’07), co-located with the 22nd International Conference on
Automated Software Engineering (ASE’07), 5 November 2007.

5. S.-W. Cheng, D. Garlan, and B. Schmerl. Stitch: A language for architecture-based
self-adaptation, 2011. Submitted for Publication.

6. M. Derakhshanmanesh, M. Amoui, G. O’Grady, J. Ebert, and L. Tahvildari. Graf:
graph-based runtime adaptation framework. In Proceeding of the 6th interna-
tional symposium on Software engineering for adaptive and self-managing systems,
SEAMS ’11, pages 128–137, New York, NY, USA, 2011. ACM.

7. D. Garlan, S.-W. Cheng, A.-C. Huang, B. Schmerl, and P. Steenkiste. Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer, 37:46–
54, October 2004.

8. D. Garlan, R. T. Monroe, and D. Wile. Foundations of component-based systems.
chapter Acme: architectural description of component-based systems, pages 47–67.
Cambridge University Press, New York, NY, USA, 2000.

9. D. Hirsch, J. Kramer, J. Magee, and S. Uchitel. Modes for software architectures.
In of Lecture Notes in Computer Science, pages 113–126. Springer, 2006.

10. J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software
architectures. In Proceedings of the 5th European Software Engineering Conference,
pages 137–153, London, UK, 1995. Springer-Verlag.

11. M. A. Munawar, M. Jiang, T. Reidemeister, and P. A. S. Ward. Filtering sys-
tem metrics for minimal correlation-based self-monitoring. In Proceedings of the
2009 Third IEEE International Conference on Self-Adaptive and Self-Organizing
Systems, SASO ’09, pages 233–242, Washington, DC, USA, 2009. IEEE Computer
Society.

12. M. A. Munawar and P. A. S. Ward. Leveraging many simple statistical models
to adaptively monitor software systems. Int. J. High Perform. Comput. Netw.,
7:29–39, February 2011.

13. A. J. Ramirez, B. H. Cheng, P. K. McKinley, and B. E. Beckmann. Automatically
generating adaptive logic to balance non-functional tradeoffs during reconfigura-
tion. In Proceeding of the 7th international conference on Autonomic computing,
ICAC ’10, pages 225–234, New York, NY, USA, 2010. ACM.

14. M. Sloman. Policy driven management for distributed systems. Journal of Network
and Systems Management, 2:333–360, 1994. 10.1007/BF02283186.


