
Conditional Labelling for Abstract
Argumentation ?

Guido Boella1, Dov M. Gabbay2, Alan Perotti1, Leendert van der Torre3, and
Serena Villata4

1 Dipartimento di Informatica, Università di Torino {guido,perotti}@di.unito.it
2 King’s College London dov.gabbay@kcl.ac.uk

3 ICR, University of Luxembourg leon.vandertorre@uni.lu
4 INRIA, Sophia Antipolis serena.villata@inria.fr

Abstract. Agents engage in dialogues having as goals to make some
arguments acceptable or unacceptable. To do so they may put forward
arguments, adding them to the argumentation framework. Argumenta-
tion semantics can relate a change in the framework to the resulting
extensions but it is not clear, given an argumentation framework and a
desired acceptance state for a given set of arguments, which further ar-
guments should be added in order to achieve those justification statuses.
Our methodology, called conditional labelling, is based on argument la-
belling and assigns to each argument three propositional formulae. These
formulae describe which arguments should be attacked by the agent in
order to get a particular argument in, out, or undecided, respectively.
Given a conditional labelling, the agents have a full knowledge about the
consequences of their attacks on the acceptability of each arguments,
without having to recompute the overall labelling of the framework for
each possible set of attacks they may raise.

1 Introduction

Agents engage in dialogues having as goals to make some arguments acceptable
or unacceptable: for instance, agent A wins the auction or agent B is proven
guilty. At each turn, an agent owns a set of possible arguments she can add to
the framework: each addition of further arguments to the framework is called
a move. Argumentation semantics allow us to relate the introduction of a new
argument (a move) to the resulting justification status of an argument (the goal):
for instance, if you defeat argument α then argument β will be labeled undec.
What is missing is a mechanism for making inferences from goals to moves: sup-
pose an agent wants to make an argument β undec. How can she compute which
arguments to add in order to achieve this goal? What she can do is to try and
simulate the introduction of every possible argument she owns in the framework
and then compute β’s resulting label, comparing it to her goal. Beside this ex-
haustive approach there is no way, so far, for an agent to know which move to
make in order to achieve her goal. Since reaching a goal may require the insertion
? A longer version of this paper appeared in the proceedings of TAFA11 [2]

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 59–65. September 29th–30th 2011, London UK.

60 Alan Perotti et al.

of several arguments, the complexity of the exhaustive approach is exponential
(wrt cardinality of the powerset) over the number of arguments an agent can
add to the framework.

The research questions of the paper are:

1. What kind of information can we associate to each argument concerning
its possible justification statuses depending on the acceptability of other
arguments in the framework?

2. How to compute this information in an efficient way?

We deal with abstract argumentation frameworks [4], where the internal
structure of the arguments is left unspecified. We are inspired by Caminada’s la-
belling [3], which assigns to each argument a label in, out, undec, and we extend
this idea by assigning a triple of propositional formulae, called conditional lables,
to every argument in the framework. These formulae are a guide in the dialogic
process and suggest which move should be made next. Note that these formulae
(and the algorithmic process to compute them) are in no way related to the
number of agents: our approach does not depend on the number of argumenting
agents and we apply it to a two-agent scenario for the sake of explanation. In
this paper we focus on the grounded semantics, since it always allows to com-
pute one single labelling. Our approach can be extended to deal with different
semantics, but semantics with multiple or no extensions must be handled with
care, in particular when investigating about credulous approaches to multiple
extensions semantics.

2 Conditional labels

Our goal is to enrich each argument with some information about his vulner-
ability, i.e., we want to know how this argument could be successfully (even if
indirectly) attacked, defended or made undecided. We purposely restrict our at-
tention to argument defeating, due to two considerations: first of all, attacks are
not resources but consequences of the insertion of the arguments and given a
couple of arguments the existence of attacks between them is determined and not
subject to strategic moves of agents. In second place, the building of an argumen-
tation framework is a monotonic process and arguments can be defeated with
new arguments rather than removed from the framework. Hence our proposal is
to attach three formulae to each argument, meaning respectively

– Which arguments should be attacked in order to have this argument labelled in?

– Which arguments should be attacked in order to have this argument labelled out?

– Which arguments should be attacked in order to have this argument labelled undec?

Given an argumentation framework 〈A,R〉 (as defined in [4]), we associate
to each argument α three formulae: α+, α−, α?. We indicate a generic formula
associated to argument α as α∗. The language of the formulae is the same:

Conditional Labelling for Abstract Argumentation 61

Definition 1. (Language of conditional labels)

– if β ∈ A, β◦ is a formula.
– > and ⊥ are formulae
– if α∗1 and α∗2 are formulae, also α∗1 ∧ α∗2 and α∗1 ∨ α∗2 are.

The interpretation of the formulae is: a formula α+, if satisfied, guarantees that
the related argument α is accepted (labelled in). The same holds for α− formulae
for out labels and α? formulae for undec labels respectively. The atoms of those
formulae are argument names β◦ or the special values >,⊥.

– β◦ means the agent has to defeat argument β (to reach her goal)
– > means the agent does not need to do anything (to reach her goal)
– ⊥ means the agent can not do anything (to reach her goal)

Due to space constraints, formal definition of the use of conditional labels
is omitted; the main intuition will be just introduced informally. For techincal
details see [2].

Each conditional label is composed by a head and a body; given an argu-
ment α, its three conditional labels are α+ : body+

α , α− : body−α , α? : body?
α.

A targetset for a label is a minimal set of arguments such that the arguments
names are a solution for the label.

When we modify a framework via a move M we can defeat a set of arguments
defeat(M). If this set is one of the allowed target sets for the conditional label
lab of an argument α, then the labelling of α in the resulting framework will be
the one expressed by the head of the label lab: for instance, if defeat(M) is a
target set for body+

α , after M α’s label will be in (same for body−α and out and
body?

α and undec respectively).

From a practical point of view, suppose that an agent wants to defend ar-
gument α: she has to compute the label α+ and the target sets of the formula
(that is, the minimal sets of solutions that satisfy the body of the label) are the
arguments that have to be defeated in order to defend α.

3 Computing conditional labels

Our approach can be decomposed in four phases:

1. associate each argument to three base (or local) labels,
2. compute conditional labels by substitution,
3. find target sets (for instance, by dnf-normalizing the formulae),
4. find a move such that it satisfies a target set of the goal formula.

The local labels correspond to:

a+ =
∧

b s.t. (b,a)∈R

b−

62 Alan Perotti et al.

The meaning of this formula is: in order to ensure a’s acceptance, all of a’s
attackers must be out.

a− = a◦ ∨
∨

b s.t. (b,a)∈R

b+

The meaning of this formula is: in order to ensure a’s rejection, either a is
defeated or one of a’s attackers is accepted.

a? =

 ∨
b s.t. (b,a)∈R

b?

 ∧
 ∧
b s.t. (b,a)∈R

b− ∨ b?


The meaning of this formula is: in order to have an argument a undecided, at
least one of a’s attackers has to be undecided and all of a’s attackers must be out
or undecided.
Note that this definition of grounded semantics mirrors Dung’s original formu-
lation ([4]).
The a◦ in the second formula means a has to be defeated and no substitution is
required; b+, b− and b? refer to other formulae and have to be substituted to the
actual formulae they refer to.

After this initial definition, the substitution process (phase two) takes place.
It consists in substituting the references to other labels to those labels’ actual
values.

Simplifications need to be specified as follows:

– > ∨ α > (you either do nothing or do α: doing nothing is more convenient)

– ⊥ ∨ α α (you can either fail or do α: in order to succeed you have to do α)

– > ∧ α α (you have to both do nothing and α, therefore α)

– ⊥ ∧ α ⊥ (you fail and you have to do α: you still fail)

– α ∧ α α

– α ∨ α α

– α ∨ (α ∧ β) α

– α ∧ (α ∨ β) α

Let i, j ∈ {+,−, ?}. If αi appears in the body of αj :

– if i = j =?, αi >
– else, αi ⊥

We express our termination conditions as simplification rules. The meaning is
the following: if, substituting in the body of a conditional formula for an argu-
ment α, a conditional formula over the same argument is reached, the argument
α belongs to a loop. So in this case the a? label is satisfied while a+, a− are not:
if there is no way to give this argument an in-out label navigating the whole
loop, it is pointless to go through the whole loop again.

Conditional Labelling for Abstract Argumentation 63

4 Example

We now present some examples of conditional labelling.

Consider the example visualized in Figure 1.1. The basic labels are:

– a+ : b−, a− : b+ ∨ a◦, a? : b?

– b+ : a−, b− : a+ ∨ b◦, b? : a?

Solving the labels, for a we get a+ : b◦, a− : a◦, a? : >.

a b a b c

(1) (2)

Fig. 1: Basic frameworks. Plain grey nodes represent in arguments and black nodes
represent out arguments. undec arguments are depicted as dashed grey nodes.

Consider the example visualized in Figure 1.2. The basic labels are:

– a+ : >, a− : a◦, a? : ⊥
– b+ : a− ∧ c−, b− : a+ ∨ c+ ∨ b◦, b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
– c+ : b−, c− : b+ ∨ c◦, c? : b?

Consider argument b: it is out, but can be labelled in if we attack both a and c or
undec if we attack a (thus activating the b−c loop). We compute the conditional
labels in the following way:

b+ : a− ∧ c−
= a ∧ (b+ ∨ c◦)
= a◦ ∧ (⊥ ∨ c◦)
 a◦ ∧ c◦ (b can be labelled in by defeating a and c)

b− : a+ ∨ c+ ∨ b◦
= > ∨ b− ∨ b◦
= > ∨⊥ ∨ b◦
 > (no move is required in order to label b out)

b? : (a? ∨ c?) ∧ (a− ∨ a?) ∧ (c− ∨ c?)
= (⊥ ∨ b?) ∧ (a◦ ∨ ⊥) ∧ ((b+ ∨ c◦) ∨ b?)
 (b?) ∧ (a◦) ∧ ((b+ ∨ c◦) ∨ b?))
= (b?) ∧ (a◦) ∧ ((⊥ ∨ c◦) ∨ >)
 (b?) ∧ (a◦) ∧ (>)
= (>) ∧ (a◦) ∧ (>)
 a◦ (b can be labelled undec by defeating a)

The conditional labels computed mirror the intuitive description of the frame-
work we gave and model it in a formal way.

64 Alan Perotti et al.

5 Related Work

Conditional labelling is closely related to the dialogues games [5, 1]. Among
others, Prakken [5] presents a formal framework for a class of argumentation
dialogues, where each dialogue move either attacks or surrenders to a preceding
move of the other participant. Amgoud and Hameurlain [1] argue that a strategy
is a two steps decision process: i) to select the type of act to utter at a given
step of a dialogue, and ii) to select the content which will accompany the act.
Roth et al. [6] start from two principles: i) the outcome of a dispute depends
on the strategies actually adopted by parties, but ii) this does not mean that
the outcome can never be predicted because by using game theoretical solution
concepts, the actions themselves can often be found. In comparison with this
kind of frameworks, we share the idea that the first step consists in choosing the
next move depending on the strategies of the agents. The differences are that
we are not interested in providing the complete framework for argumentation
dialogues games, we aim at providing a tool which can be used in those systems
and which can be integrated with strategies. We do not restrict our framework
to deal with two agents, and we extend the well-known argumentation labelling
in order to provide a complete information about the argumentation framework
on which it is applied.

6 Summary

In this paper we present a new kind of argument labelling, called conditional
labelling. Conditional labelling allows to associate to each argument the infor-
mation concerning its possible justification statuses, depending on the changes
in the framework. In particular, we express this information by means of propo-
sitional formulae which express which arguments should be attacked in order to
get the desired argument accepted, not accepted, or undecided. While it is quite
straightforward to assign those conditional labels in argumentation frameworks
without cycles and multiple attacks, it is rather complicated in the general case.
When an argumentation framework with cycles is considered, it is possible to
have in the conditional label α∗ of an argument another α∗ because the condi-
tional labelling algorithm, using substitution, looks for all the attackers of the
node until it finds the node itself. The conditional labelling allows the agents
to avoid the exhaustive search of all the possible combinations in adding new
arguments, and decreases the exponential complexity this search requires.

Future work addresses several issues: first of all, a deeper investigation on the
complexity results related to the computation of the new labellings is necessary.
From a purely argumentative perspective, we want to find out how conditional
labels can be useful after a move: that is, if the previous information can be
used to compute new conditional labels after the framework has been modified.
Associating a cost concept to moves, our labelling lets agents link action costs
to goals’ outcomes, and can therefore be used as an underlying mechanism to
develop strategies in a game theoretical context.

Conditional Labelling for Abstract Argumentation 65

References

1. L. Amgoud and N. Hameurlain. A formal model for designing dialogue strategies.
In H. Nakashima, M. P. Wellman, G. Weiss, and P. Stone, editors, Autonomous
Agents and Multiagent Systems (AAMAS), pages 414–416. ACM, 2006.

2. G. Boella, D. Gabbay, A. Perotti, L. van der Torre, and S. Villata. Conditional
labelling for abstract argumentation. In Procs. of the 1st Workshop on Theory and
Applications of Formal Argumentation (TAFA), 2011.

3. M. Caminada. On the issue of reinstatement in argumentation. In M. Fisher,
W. van der Hoek, B. Konev, and A. Lisitsa, editors, Journées Européennes sur
la Logique en Intelligence Artificielle (JELIA), volume 4160 of Lecture Notes in
Computer Science, pages 111–123. Springer, 2006.

4. P. M. Dung. On the acceptability of arguments and its fundamental role in nonmono-
tonic reasoning, logic programming and n-person games. Artif. Intell., 77(2):321–
358, 1995.

5. H. Prakken. Coherence and flexibility in dialogue games for argumentation. J. Log.
Comput., 15(6):1009–1040, 2005.

6. B. Roth, R. Riveret, A. Rotolo, and G. Governatori. Strategic argumentation: a
game theoretical investigation. In International Conference on AI and Law (ICAIL),
pages 81–90. ACM, 2007.

