
Agent Oriented Programming: from Revolution
to Evolution (Position Paper)

Alex Muscar

University of Craiova, Romania
amuscar@software.ucv.ro

Abstract. Despite being around for quite some time, agents have failed
to gain wide acceptance. Their AI heritage has forced them into a niche
from which they cannot seem to escape: being the vehicle of AI exper-
imentation. Even though the premises of Agent Oriented Programming
(AOP) is a revolutionary departure from Object Oriented Programming
(OOP) the vision has not materialized.
In this paper we propose taking a step back and looking at AOP as
an evolution from OOP. Rather than viewing agents as specialized AI
tools, we adopt a view on agents as a generic metaphor for building
complex software systems. The guiding lines of our approach are: (i)
overall conceptual simplicity; and (ii) the use of programming languages
as the main means of expression. We will explore some paradigms and
approaches that we think can greatly benefit the view of agents as an
evolution from OOP.

1 Introduction

When introduced by Shoham almost two decades ago [16], Agent Oriented Pro-
gramming (AOP) was intended as a higher level means of developing complex
software systems – when compared to Object Oriented Programming (OOP).
Soon after its introduction is was regarded by many as a “revolution in soft-
ware” [7]. But the promises of the agent community have failed to materialize
and agents haven’t gained wide acceptance. They are mostly regarded as exper-
imentation tools for the AI community instead of a technology for developing
practical applications. Motivated by the agent paradigm’s lack of success there
are voices that predict its downfall [8]. At the same time some members of the
agent community are trying to raise awareness to the lack of coherence and
perspectives in the community [3,15].

We believe that the very fact of looking at AOP as a revolutionary step from
OOP instead of an evolutionary one has been one of the main reasons that led
to the current state of affairs. Given the AI heritage of the agent community it is
no wonder that most of its efforts went into models of rational agents. While this
has led to a series of interesting results it also meant that other aspects of agent
systems such as the organizational ones or the ones regarding the environment
in which agents operate have not been given the attention they deserve [6]. This

Andrew V. Jones (Ed.): Proceedings of the 1st Imperial College Student Workshop (ICCSW ‘11),
pp. 52–58. September 29th–30th 2011, London UK.



Agent Oriented Programming 53

was most unfortunate as those two aspects are essential to using agents as a
generic metaphor for building complex software systems.

The purpose of this paper is twofold. First, it takes a conceptual step back,
and looks at agents as an evolution of the OOP and the Actors model [1]. Second,
it it tries to distill the core concepts that will go into the making of a new agent
language, which we plan to develop in the near future. We have chosen two
basic concepts which we plan to use as the basis of our language: reactive objects
[11] and dynamic delegation as featured in prototypical languages such as SELF
[17,4,18]. Based on this two concepts we believe that more advanced topics such
as concurrency, autonomy and security can be tackled.

In [6], Dastani identifies the development of programming languages that
combine the three key abstractions of multi-agent system (MAS) – agents, or-
ganizations and environments – as one of the main challenges of the agent com-
munity. After a brief survey of some popular agent languages in sec. 2 we focus
on each of the aforementioned aspects in sec. 3. We conclude in sec. 4.

2 Motivation and Background

As stated above we adopt the view that languages profoundly influence the way
programmers design systems. Thus, we think that a language needs to provide:
i) a uniform model (i.e. everything is an agent); ii) self-sufficiency (i.e. the
capacity to extend the language from within itself); and iii) reified concepts
from the problem domain (e.g. agents, environments, organizations). Given this
requirements, in table 1 we make a succinct overview of three of the most popular
agent languages: JASON, GOAL and MetateM.

JASON GOAL MetateM
Uniformity no yes yes

Self-sufficiency no no no
Reified concepts none none agents

Table 1. Comparing agent languages

Each of the languages considered in our overview fails for one for more of
our requirements. JASON is neither uniform – agents and environments are
separate entities, nor does it feature reified entities. If we consider belief and
knowledge bases as being part of the agent we can consider that GOAL is a
uniform language since it only operates with agents, but this does not prove to
be that useful since agent operations are limited and environments are declared
implicitly. MetateM is the closest language to our desired model. It is uniform in
the sense that agents are used to represent other agent’s environments reifying
the concept of agents in the process. All three languages fail when it comes to
self-sufficiency since they can only be extended in Java.



54 Alex Muscar

3 An evolutionary approach

We will address each of the three concepts identified by Dastani in [6] – agents, or-
ganizations and environments – while trying to provide uniformity, self-sufficiency
and problem domain reification.

3.1 Individual agents

In their simplest definition agents are autonomous and interacting entities [6].
Agents are autonomous in the sense that they can decide which action to per-
form next in order to reach their objective. This is indeed a very lose definition
of agents. Instead, for the rest of this paper, we shall operate with the follow-
ing definition: an agent is a computational entity that (i) has its own thread of
control and can decide autonomously if and when to perform a given action; (ii)
communicates with other agents by asynchronous message passing1. This defi-
nition implies concurrently executing agents with reactive behaviors. This is in
line with the definition of AOP systems provided by Shoham in [16] where AOP
is a specialization of OOP in the sense of the Actor model.

We begin by looking at three possible abstractions for single agent entities:
objects, actors and reactive objects [11]. We have chose the former two since our
purpose is going back to the origins of the agent metaphor, and the latter as an
evolution of objects which borrows from actors.

Objects Actors Reactive Objects
Granularity object actor object

Execution model sequential concurrent concurrent
Communication sync async sync and async
Message ordering strict order no restriction strict order

Table 2. Comparing agent abstractions

It is obvious from table 2 that reactive objects combine the best features
of OOP and the Agent model. They are autonomous units of execution that
are either executing the sequential code of exactly one method, or passively
maintaining their state [11]. While this almost fits our definition of agents, there
is still one aspect that we haven’t fully addressed: autonomy. Reactive objects
are autonomous in the sense of having their own thread of control there is still
the issue of decision making, but in order to be fully autonomous an agent needs
a decision making component [6]. A popular choice in the agent community is
the BDI model which can be easily mapped on the concepts already introduced
above. This view of agents gives us a higher level view which is especially useful
when tackling the inherent concurrency in the execution model that we have
1 We consider asynchronous programming as being characterized by many simultane-
ously pending reactions to internal or external events



Agent Oriented Programming 55

defined for our agents. An interesting approach to dealing with concurrency by
focusing on the execution of plans instead of programs or processes has been
proposed for the E language: communicating event loops [9].

The communicating events loops model can be seen as a refinement of the
reactive object semantics. When a thread of control2 needs to send an asyn-
chronous message send it ads an entry to a queue of pending deliveries. During
a turn a pending delivery is dequeued, the message is sent, and all the resulting
synchronous calls are executed. When a turn finishes, another entry from the
pending queue is dequeued and the process starts all over again.

To address distributed scenarios a further refinement is introduced: objects
running in the same event loops can be invoked both synchronously and asyn-
chronously while objects running in remote event loops can only be invoked
asynchronously. This offers isolation for plans executing in different event loops.

The communicating events loops model offers two key properties for concur-
rent systems:

Asynchrony messages between two event loops are sent asynchronously and
the event loop controls when they are sent the risk of deadlocks is eliminated
because an event loop can never interrupt its currently executing plan to wait
for another event loop to execute its plan; and

Serializability an event loop reacts to incoming events serially the risk of race
conditions is eliminated.

For these reasons this model has also been adopted by AmbientTalk [5] which
deals with ad hoc networks, highly distributed and concurrent systems.

3.2 Organization

In order for a multi-agent system to achieve its purpose the behavior of individ-
ual agents has to be organized. Furthermore, the system needs to maintain some
global invariants. This can be done endogenously, by making the organizational
and regulatory aspects part of the agent. We think that the endogenous approach
is cumbersome and that it obscures the development of individual agents. We
find the exogenous approach much more appealing: agent’s actions are exter-
nally controlled. This leads to a development style that’s more modularized and
decoupled.

Let’s once again look at the OOP community for inspiration: dynamic dele-
gation as featured in prototypical languages, such as SELF, seems to offer the
flexibility we are looking for when it comes to structuring adaptive distributed
systems, and we have chosen it for its elegance and conceptual simplicity. In
[18], the authors introduce the concept of traits for organizing large prototypical
systems. Traits are akin to abstract types: they are used to factor out common
functionality shared multiple objects. Thus, altering the behavior of a trait also
alters the behavior of all the objects that share it.
2 For the purpose of this article we can think of thread of control and event loop as
interchangeable terms.



56 Alex Muscar

Some of the research in agent organization has focused on using coordina-
tion artifacts – from the Agents and Artifacts (A&A) theory [12]. According to
[13] coordination artifacts are entities designed to provide some kind of func-
tionality or service, they have a well-defined interface, providing operations that
can be invoked by agents. Indeed, coordination artifacts have much in common
with traits. Another benefit of traits is that hey naturally handle dynamically
changing behavior either by altering the trait as stated before, or by changing
an object’s traits on the fly.

Another advantage of adopting traits has to do with security. Since traits
act as abstract types defining reusable behavior they are suitable for a system
implementing object capabilities [10,2]. In this model there is no ambient au-
thority. All actions are performed via unforgettable references to objects. The
only component of the system which has full authority is the powerbox which,
based on some security criteria, can hand references to various capabilities to the
requesting objects. This system is extremely flexible since instead handing a ref-
erence to the actual capability, the powerbox can pass a reference to a stripped
down version of the capability (e.g. in the case of a file system access capability
it can pass a version that can only read files, but not delete them). Traits are
especially suitable for this model since new traits can be defined in terms of
existing one by refining their behavior [18].

3.3 Environment

One of the main models proposed for representing environments for MAS is
A&A [14]. As stated in sec. 3.2, there is a close resemblance between coordination
artifacts and traits. But this resemblance is not limited to coordination artifacts.
Artifacts are generic bundles of behavior that provide a usage interface. They can
be co-constructed and co-used by agents and they can be grouped in namespaces.
This view of artifacts maps directly on prototypical objects, which thanks to their
generality can act as traits, regular objects and namespaces. This opens up new
ways of organizing systems.

3.4 A coherent view

By combining the communicating event loops model with the delegation seman-
tics of prototypical languages we gain uniformity. We can define agents, artifacts
and environments as event loops. Furthermore, since we can change delegation
links at runtime, we can also reify agent behavior as traits3. This buys us flexi-
bility and adaptability: an agent can adapt to varying environmental conditions
by delegating to different traits. The advantages span to the distributed aspects
of the system as well. By introducing a distinction between local and remote
event loops we can take advantage of uniformity further: an agent can delegate
to either a local or remote counterpart. In turn this can benefit agent mobility

3 Which are also agents.



Agent Oriented Programming 57

since agents are self contained entities. As long as their delegation links are ap-
propriately adapted, agents can continue to function the same way on the new
host as they did on the original one.

While this features could be implemented as an Domain Specific Language
(DSL) – or even Embedded Domain Specific Language (EDSL) – we think that
the approach would benefit most by being implemented as a full fledged language.
Together, the features from the previous paragraph, make up for a language
that conforms to our initial criteria: uniformity, self-sufficiency and reification
of concepts from the problem domain. It also exposes the three main features
identified by Dastani in [6] to the programmer.

4 Conclusion and Future Work

In this paper we have presented our view on agent languages. We have addressed
the three main abstractions of such languages: agents, organizations and envi-
ronments. In doing so we took a step back and tried to gear agent development
toward a more generic audience while still keeping its high level view on compu-
tation.

We also looked at what hints the agent paradigm can take from OOP, and
especially from the prototype-based model. We showed how the flexibility of pro-
totypical objects can benefit the organization of MAS. We also briefly addressed
how representing environments for agents can use the same model thus leading
to a uniform representation.

In the near future we will closely focus on the ideas proposed in this paper,
especially on implementing an agent language based on communicating event
loops and we will investigate the use of traits in providing security, organization
and the reification of environments. We will also address some open issues that
we glossed over in this paper because of the lack of space: i) the interaction
of the inherent dynamism in prototypical systems like SELF with the object
capability model and event loops; ii) re-introducing some static checks in the
context of such a highly dynamic system; and iii) language extensibility both at
the syntactic and semantic level.

Some additional problems are related to runtime system of such an agent
language. In order to offer concurrency, most of the current agent languages, use
one Operating System (OS) thread per agent. But OS threads are expensive so
such a solution does not scale well for systems with many agents. Using a thread
pool seems like a good solution, but have yet to study the interaction of event
loops and thread pools. To complicate things further, choosing a concurrency
model (e.g. futures, promises) has a deep impact on the design of the language
(e.g. using promises with callbacks for when they are resolved leads to the well
known problem of inversion of control).

These are all serious issues that need to be settled, but we feel that the basic
concepts (reactive objects with dynamic delegation) make for a solid foundation
for an agent language targeted at MAS.



58 Alex Muscar

References

1. Agha, G.: Actors: a model of concurrent computation in distributed systems. MIT
Press, Cambridge, MA, USA (1986)

2. Bracha, G., von der Ahé, P., Bykov, V., Kashai, Y., Maddox, W., Miranda, E.:
Modules as objects in newspeak. In: Proceedings of the 24th European confer-
ence on Object-oriented programming. pp. 405–428. ECOOP’10, Springer-Verlag,
Berlin, Heidelberg (2010)

3. Castelfranchi, C.: Bye-bye agents? not. IEEE Internet Computing 14, 93–96 (March
2010)

4. Chambers, C., Ungar, D., Chang, B.W., Hölzle, U.: Parents are shared parts of
objects: inheritance and encapsulation in self. Lisp Symb. Comput. 4, 207–222
(July 1991)

5. Cutsem, T.V., Mostinckx, S., Boix, E.G., Dedecker, J., Meuter, W.D.: Ambienttalk:
Object-oriented event-driven programming in mobile ad hoc networks. In: Proceed-
ings of the XXVI International Conference of the Chilean Society of Computer
Science. pp. 3–12. IEEE Computer Society, Washington, DC, USA (2007)

6. Dastani, M.: Programming multi-agent systems (May 2011)
7. Guilfoyle, C., Warner, E.: Intelligent Agents: the new revolution in software. Ovum

(1994), incomplete ref
8. Hewitt, C.: Perfect disruption: The paradigm shift from mental agents to orgs.

IEEE Internet Computing 13, 90–93 (January 2009)
9. Miller, M.S., Tribble, E.D., Shapiro, J.: Concurrency among strangers: program-

ming in e as plan coordination. In: Proceedings of the 1st international conference
on Trustworthy global computing. pp. 195–229. TGC’05, Springer-Verlag, Berlin,
Heidelberg (2005)

10. Miller, M.S.: Robust Composition: Towards a Unified Approach to Access Con-
trol and Concurrency Control. Ph.D. thesis, Johns Hopkins University, Baltimore,
Maryland, USA (May 2006)

11. Nordlander, J., Jones, M.P., Carlsson, M., Kieburtz, R.B., Black, A.P.: Reactive
objects. In: Symposium on Object-Oriented Real-Time Distributed Computing.
pp. 155–158 (2002)

12. Omicini, A.: Formal respect in the a&a perspective. Electron. Notes Theor. Com-
put. Sci. 175, 97–117 (June 2007)

13. Ricci, A., Viroli, M.: Coordination artifacts: a unifying abstraction for engineering
environment-mediated coordination in MAS. Informatica 29(4), 433–443 (2005)

14. Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in
cartago. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.)
Multi-Agent Programming:, pp. 259–288. Springer US (2009)

15. Santi, A.: From objects to agents: Rebooting agent-oriented programming for soft-
ware development

16. Shoham, Y.: Agent-oriented programming. Artif. Intell. 60, 51–92 (March 1993)
17. Smith, R.B., Ungar, D.: Self: The power of simplicity. Tech. rep., Mountain View,

CA, USA (1994)
18. Ungar, D., Chambers, C., Chang, B.W., Hölzle, U.: Organizing programs without

classes. Lisp Symb. Comput. 4, 223–242 (July 1991)


