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Abstract. In this paper we study time-bounded verification of a finite continuous-
time Markov chain (CTMC) C against a real-time specification, provided as a
metric temporal logic (MTL) property ϕ. The key question is: what is the prob-
ability of the set of timed paths of C that satisfy ϕ over a time interval of fixed,
bounded length? We provide approximation algorithms to solve these problems.
We first derive a bound N such that timed paths of C with at most N discrete
jumps are sufficient to approximate the desired probability up to ε. Then, for each
discrete (untimed) path σ of length at mostN , we generate timed constraints over
variables determining the residence time of each state along σ, depending on the
real-time specification under consideration. The probability of the set of timed
paths, determined by the discrete path and the associated timed constraints, can
thus be formulated as a multidimensional integral. Summing up all such proba-
bilities yields the result.

1 Introduction

Verification of continuous-time Markov chains (CTMCs) has received much attention
in recent years [5]. Thanks to considerable improvements of algorithms, (symbolic)
data structures and abstraction techniques, CTMC model checking has emerged as a
valuable analysis technique. Aided by powerful software tools, it has been adopted
by researchers from, e.g., systems biology, queuing networks and dependability. To
mention just a few practical applications, these models have been used to quantify the
throughput of production lines, to determine the mean time between failure in safety-
critical systems, and to identify bottlenecks in high-speed communication networks.

The focus of CTMC model checking [4] has primarily been on checking stochas-
tic versions of the branching-time temporal logic CTL, such as continuous stochas-
tic logic CSL [4]. The verification of linear temporal logic (LTL) properties reduces
to applying well-known algorithms [14,10] to embedded discrete-time Markov chains
(DTMCs). Linear-time properties equipped with timing constraints have only recently
been considered. In particular, [7,8] treat linear real-time specifications that are given as
deterministic timed automata (DTA). These include properties of the form, “what is the
probability to reach a given target state within the deadline, while avoiding unsafe states
and not staying too long in any of the dangerous states on the way?”. Such properties
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cannot be expressed in CSL nor in its dialects [3,11]. Model checking DTA properties
can be done by a reduction to computing the reachability probability in a piecewise de-
terministic Markov process, based on the product construction between the CTMC and
DTA [8,6]. It remains a challenge to tackle more general real-time specifications like
Metric Temporal Logics ([1,12], MTL).

For this reason, we study the time-bounded verification problem of a CTMC C,
against a real-time specification provided as an MTL formula ϕ. The key question is:
what is the probability of the set of timed paths of C that satisfy ϕ over a fixed time
interval [0, T ] where T ∈ R>0? We provide approximation algorithms to solve these
problems. Given any ε > 0 a priori, we first derive a bound N such that it is sufficient
only to consider timed paths of C with at most N discrete jumps to approximate the
desired probability up to ε. Then, for each discrete (untimed) path σ of C of length
at most N , we generate a family of linear constraints, S, over variables determining
the residence time of each state in σ. The discrete path σ, together with the associated
timing constraints S, determines a set of timed paths of C, each of which satisfies ϕ.
The probability of this set of timed paths can be formulated as a multidimensional inte-
gral, which can be calculated by Laplace transforms. Summing up all such probabilities
yields the desired result. We believe these results are of independent interest, as they
have potential usage in domains such as runtime verification.

The reader should notice that even though MTL is generally undecidable [2] (if we
include singular intervals), this does not affect our algorithm. In fact, informally we can
state that in any CTMC C, the probability of an event happening in a specific singular
time instant is zero.

2 Preliminaries

2.1 Continuous-time Markov chains

Given a set H, let Pr: F(H) → [0, 1] be a probability measure on the measurable
space (H,F(H)), where F(H) is a σ-algebra over H. Let Distr(H) denote the set of
probability measures on this measurable space.

Definition 1 (CTMC). A (labeled) continuous-time Markov chain (CTMC) is a tuple
C = (S,AP, L, α,P, E) where

– S is a finite set of states;
– AP is a finite set of atomic propositions;
– L : S → 2AP is the labeling function;
– α ∈ Distr(S) is the initial distribution;
– P : S × S → [0, 1] is a stochastic matrix; and
– E : S → R≥0 is the exit rate function.

Example 1. An example CTMC is illustrated in Fig. 1, where AP = {a, b, c} and s0 is
the initial state, i.e., α(s0) = 1 and α(s) = 0 for any s 6= s0. The exit rates are indicated
at the states, whereas the transition probabilities are attached to the transitions.

In a CTMC C, state residence times are exponentially distributed. More precisely,
the residence time X of a state s ∈ S is a random variable governed by a nonnegative
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Fig. 1. An example CTMC

exponential distribution with parameter E(s) (written as X ∼ Exp(E(s))). Hence, the
probability to exit state s in t time units (t.u. for short) is given by

∫ t
0
E(s) · e−E(s)τdτ .

Furthermore, the probability to take the transition from s to s′ in t t.u. equals P(s, s′) ·∫ t
0
E(s) · e−E(s)τdτ .

Definition 2. Given a CTMC C = (S,AP, L, α,P, E), we define the following no-
tions.

– A (finite) discrete path σ = s0 → s1 → s2 → . . . is a (finite) sequence of states;
we define σi to be the state si, and σi to be the prefix of length i of σ.

– A (finite) timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . ., where xi ∈ R>0 for each

i ≥ 0, is a sequence starting in state s0; we define |ρ| to be the length of a finite
timed path ρ; ρ[n] := sn is the n-th state of ρ and ρ〈n〉 := xn is the time spent
in state sn; let ρ@t be the state occupied in ρ at time t ∈ R≥0, i.e. ρ@t := ρ[n],

where n is the smallest index such that
n∑
i=0

ρ〈i〉 ≥ t.

Intuitively, a timed path ρ = s0
x0−→ s1

x1−→ s2
x2−→ . . . suggests that the CTMC

C starts in state s0 and stays in this state for x0 t.u., and then jumps to state s1, staying
there for x1 t.u., and then jumps to s2 and so on. An example timed path is ρ = s0

3−→
s1

2−→ s0
1.5−→ s1

3.4−→ s2 . . . with ρ[2] = s0 and ρ@4 = ρ[1] = s1.

Let PathsC denote the set of infinite timed paths in the CTMC C, and PathsC(s)
the set of infinite timed paths in C that start in s. Given a time bound T ∈ R≥0 and
N ∈ N ∪ {∞}, we define PathsCT,<N (s), to be the set of all timed paths with at most
N − 1 discrete jumps in time interval [0, T ]; and PathsCT,≥N (s), to be the set of all
timed paths with at least N jumps in [0, T ].

For notational simplicity we will omit the superscript C when appropriate and also
we write PathsCT instead of PathsCT,≤∞ for the set of all timed paths with an arbitrary
number of jumps in [0, T ].

In general, computing the probability of a cylinder set with k intervals I0 . . . Ik−1

(i.e. k discrete jumps) reduces to calculating k integrals over I0 . . . Ik−1.

2.2 Metric Temporal Logic

Definition 3 (Syntax of MTL). Let AP be an arbitrary nonempty, finite set of atomic
propositions. Let I = [a, b] be an interval such that a, b ∈ N ∪ {∞}. The Metric
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Temporal Logic is inductively defined as:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1UIϕ2 ,

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

We introduce the time-bounded semantics for MTL, as follows.

Definition 4 (Semantics of MTL). Given an MTL formula ϕ, a time bound T , a timed
path ρ and a variable t ∈ R≥0, the satisfaction relation (ρ, t) |=T ϕ is inductively
defined as follows:

(ρ, t) |=T p ⇔ p ∈ L(ρ@t) ∧ t ≤ T
(ρ, t) |=T ¬ϕ1 ⇔ (ρ, t) 6|=T ϕ1

(ρ, t) |=T ϕ1 ∧ ϕ2 ⇔ (ρ, t) |=T ϕ1 ∧ (ρ, t) |=T ϕ2

(ρ, t) |=T ϕ1UIϕ2 ⇔ ∃t′. t ≤ t′ ≤ T s.t. t′ − t ∈ I ∧ (ρ, t′) |=T ϕ2 ∧
∀t′′. t ≤ t′′< t′ ⇒ (ρ, t′′) |=T ϕ1

where p ∈ AP and ϕ1, ϕ2 are MTL formulas.

3 MTL Specifications

In this section we study the problem of model checking CTMCs against MTL proper-
ties. Let PrCT (ϕ) := PrC({ρ ∈ PathsCT | (ρ, 0) |=T ϕ}) denote the probability that the
CTMC C satisfies the MTL formula ϕ, for a given time bound T . Instead of comput-
ing PrCT (ϕ), we give a procedure to compute PrCT,<N (ϕ) := PrC(PathsCT,<N (ϕ)) for
sufficiently large N which ensures that PrCT (ϕ)− PrCT,<N (ϕ) < ε for arbitrarily small
ε ∈ R>0. This yields an approximation algorithm. Below we present an algorithm to
compute PrCT,<N (ϕ). We first give a sketch, and provide the crucial sub-procedures in
Sec. 3.1 and Sec. 3.2.

Choose N to get the desired error bound ε. The first step of the algorithm is to choose
the smallest N such that we get the desired error bound ε.

Compute the product C ⊗ Aeϕ. The basic idea of this step is to exclude those CTMC
timed paths which definitely failϕ in order to reduce the number of paths to be analyzed.
To this end, we define an LTL formula ϕ̃ such that, if a discrete path of C fails ϕ̃, then
any timed path with the discrete path as the skeleton must fail ϕ. We then construct an
NFA out of ϕ̃ such that only those finite discrete CTMC paths which are accepted by
the NFA are the prefixes of the potential skeletons of timed paths satisfying ϕ. Then we
apply the standard product construction, which suffices to identify those CTMC finite
discrete paths analyzed in the next step.

Any MTL formula ϕ can be transformed into a positive normal form containing
only two temporal operators: U[a,b] and �[a,b], where (ρ, t) |=T �[a,b]ϕ iff ∀t′ ∈
[a, b]⇒ (ρ, t+ t′) |=T ϕ.

Given any MTL ϕ in positive normal form, we define an (untimed) LTL formula ϕ̃
as follows:
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ϕ = p ⇒ ϕ̃ = p
ϕ = ¬p ⇒ ϕ̃ = ¬p
ϕ = ϕ1 ∨ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∨ ϕ̃2

ϕ = ϕ1 ∧ ϕ2 ⇒ ϕ̃ = ϕ̃1 ∧ ϕ̃2

ϕ = ϕ1UIϕ2 ⇒ ϕ̃ = ϕ̃1U ϕ̃2

ϕ = �Iϕ1 ⇒ ϕ̃ = TRUE U ϕ̃1

where ϕ1 and ϕ2 are MTL formulas and ϕ̃1 and ϕ̃2 are LTL formulas.
As the next step, we construct a nondeterministic finite automaton (NFA)Aeϕ which

accepts all the prefixes of infinite paths satisfying the formula ϕ̃ . The NFA can be
obtained by a minor adaptation of the well-known Vardi-Wolper construction. We then
build the product of C and Aeϕ (C ⊗ Aeϕ).

Compute all the discrete paths of C ⊗ Aeϕ of length at most N and calculate the
probabilities.

1. Search the graph C ⊗ Aeϕ to get all the discrete accepting paths σ of C of length at
most N ;

2. Run Alg. 1 on each discrete path σ of length n ≤ N to obtain the system of linear
inequalities S;

3. Compute the probability of σ[S] (cf. Sec. 3.2);
4. Sum up all the probabilities for each discrete path to obtain PrCT,<N (ϕ).

3.1 Constraints Generation

We describe the Alg. 1 that takes as input a discrete path σ of length n and an MTL
formula ϕ and returns a family of linear constraints S =

∨
i∈I

∧
j∈Ji

cij where cij is a
linear inequality over the set of variables t0, . . . , tn−1.

Algorithm 1 Constraints generation
Require: A finite discrete path σ of length n > 0, an MTL formula ϕ and a time bound T
Ensure: Family of linear inequalities S over t0, . . . , tn−1

S ′ :=Constr Gen(σ,0,ϕ)
S :=Fourier Motzkin(S ′,t0,. . .,tn−1)
return S

Function Constr Gen(σ,t,ϕ)
case(ϕ) :

ϕ = p : return
`Wn

k=0 p ∈ L(σk) ∧
Pk

i=0 ti ≥ t ∧
Pk−1

i=0 ti < t
´
∧ t < T

ϕ = ¬ϕ1 : S ′ := ¬Constr Gen(σ,t,ϕ1)
ϕ = ϕ1 ∧ ϕ2 : S ′ :=Constr Gen(σ,t,ϕ1) ∧ Constr Gen(σ,t,ϕ2)
ϕ = ϕ1U[a,b]ϕ2 : S ′ := ∃t′.

`
t ≤ t′ < T ∧ t′−t≥a ∧ t′−t<b ∧ Constr Gen(σ,t′,ϕ2)

∧ ∀t′′. t ≤ t′′ < t′⇒ Constr Gen(σ,t′′,ϕ1)
´

return S ′
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3.2 Computing Probabilities

Given a CTMC C, a discrete path σ of length N and the family of linear constraints
S(t0, . . . , tN−1) obtained from Alg. 1, the main task of this section is to compute the
probability of σ[S], i.e., PrC(σ[S]). The value of the joint probability can be computed
through the following multidimensional integration:

PrC(σ[S]) =
∫
· · ·

∫
︸ ︷︷ ︸

N

S(t0,...,tN−1)

N−1∏
i=0

E(si) ·P(si, si+1)× e−E(si)τidτi. (1)

We use the algorithm of [13] (Sec. 5) to compute efficiently the multidimensional
integral based on the Laplace transform.

3.3 Main Algorithm

We summarize the time-bounded verification algorithm for a CTMC C against an MTL
formula ϕ in Alg. 2. Recall that Λ is the maximal exit rate appearing in C.

Algorithm 2 Time-bounded verification of a CTMC C against an MTL formula ϕ
Require: C, ϕ, T and ε
Ensure: PrCT,<N (ϕ)

Choose an integer N ≥ ΛTe2 + ln( 1
ε
)

Transform ϕ into eϕ and generate NFA Aeϕ out of eϕ
Compute the product C ⊗ Aeϕ
for each discrete path σ of (C ⊗ Aeϕ) �1 of length n < N do

Generate the family of linear constraints S(t0, . . . , tn−1)
Calculate the probability p of σ[S]
PrCT,<N (ϕ) := PrCT,<N (ϕ) + p

end for
return PrCT,<N (ϕ)

4 Conclusion

In this paper we have studied time-bounded verification of CTMCs against real-time
specifications. In particular, we presented effective procedures to approximate the prob-
ability of the set of timed paths of CTMCs that satisfy real-time specifications over
a time interval of fixed bounded length, arbitrarily closely. Model checking CTMCs
against linear real-time specifications has received scant attention so far. To our knowl-
edge, this issue has only been (partially) addressed in [7,3,11].

A natural question is how to tackle the traditional (time-unbounded) verification.
The scheme introduced in this paper still works. However, one cannot guarantee an
approximation to stay within the given error bound ε, which means that the resulting
procedure is not an approximation algorithm any more. We leave this as future work.
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