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Abstract. In real-world applications, the effective integration of learning and 
reasoning in a cognitive agent model is a difficult task. However, such 
integration may lead to a better understanding, use and construction of more 
realistic models. Unfortunately, existing models are either oversimplified or 
require much processing time, which is unsuitable for online learning and 
reasoning. Currently, controlled environments like training simulators do not 
effectively integrate learning and reasoning. In particular, higher-order concepts 
and cognitive abilities have many unknown temporal relations with the data, 
making it impossible to represent such relationships by hand. We introduce a 
novel cognitive agent model and architecture for online learning and reasoning 
that seeks to effectively represent, learn and reason in complex real-world 
applications. The agent architecture of the model combines neural learning with 
symbolic knowledge representation. It is capable of learning new hypotheses 
from observed data, and inferring new beliefs based on these hypotheses. 
Furthermore, it deals with uncertainty and errors in the data using a Bayesian 
inference model. The model has successfully been applied in real-time 
simulation and visual intelligence systems. 
 
Keywords: Neural-Symbolic, Cognitive Agent, Restricted Boltzmann Machine 
(RBM), Temporal Logic.  

1 World Problem 

The effective integration of automated learning and cognitive reasoning in real-world 
applications is a difficult task [1]. Usually, most applications deal with large amounts 
of data observed in the real-world containing errors, missing values and 
inconsistencies. Even in controlled environments, like training simulators, integrated 
learning and reasoning is not very successful [2], [3].  Although the use of training 
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appeared in the proceedings of IJCAI [12] and NeSy [17]. Also it includes a proof of 
soundness of the NSCA model. 

Andrew V. Jones (Ed.): Proceedings of the 1st
 Imperial College Student Workshop (ICCSW ʻ11), 

pp. 10–16. September 29th–30th
 2011, London UK. 



Neural-Symbolic Cognitive Agents: Architecture and Theory  11 

simulators simplifies the data and knowledge acquisition, it is still very difficult to 
construct a cognitive model of an (intelligent) agent that is able to deal with the many 
complex relations in the observed data. When it comes to the assessment and training 
of high-order cognitive abilities (e.g. leadership, tactical manoeuvring, safe driving, 
etc.) training is still guided or done by human experts [4]. The reason is that expert 
behaviour on high-level cognition is too complex to model, elicit and represent in an 
automated system. There can be many temporal relations between low and high-order 
aspects of a training task. Human behaviour is often non-deterministic and subjective 
(i.e. biased by personal experience and other factors like stress or fatigue) and what is 
known is often described vaguely and limited to explicit (i.e. “explainable”) 
behaviour. 

2 Knowledge Problem  

Several attempts have been made to tackle the problems described in section 1. For 
instance [5] describes a number of systems that use machine learning to learn the 
complex relations from observation of experts and trainees during task execution. 
Although these systems are successful in learning and generalization, they lack the 
expressive power of logic-based (symbolic) systems and are therefore difficult to 
understand and validate [6]. Alternatively, one could add probabilistic reasoning to 
logic-based systems [3]. These systems perform better in expressing their internal 
knowledge as they are logic based and are able to deal with inconsistencies in the data 
because they reason with probabilities. Unfortunately, when it comes to knowledge 
representation and modelling these systems still require either statistical analysis of 
large amounts of data or knowledge representation by hand. Therefore, both 
approaches are time expensive and are not appropriate for use in real-time 
applications, which demand online learning and reasoning. 

In this paper, we present a new cognitive agent model that is able to: (i) learn 
complex temporal relations from real-world observations, (ii) reason probabilistically 
about the knowledge that has been learned and/or encoded, and (iii) represent the 
agent's knowledge in symbolic form for explanation and validation. 

3 Theoretical Relevance 

The construction of effective cognitive agent models is a long standing research 
endeavour in artificial intelligence, cognitive science, and multi-agent systems [1], 
[7]. One of the main challenges toward achieving such models is the provision of 
integrated cognitive abilities, such as learning, reasoning and knowledge 
representation. Recently, cognitive computational models based on artificial neural 
networks have integrated inductive learning and deductive reasoning, see e.g. [8], [9]. 
In such models, neural networks are used to learn and reason about (an agent's) 
knowledge about the world, represented by symbolic logic. In order to do so, 
algorithms map logical theories (or knowledge about the world) T into a neural 
network N which computes the logical consequences of T. This provides also a 
learning system in the network that can be trained by examples using T as background 
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knowledge. In agents endowed with neural computation, induction is typically seen as 
the process of changing the weights of a network in ways that reflect the statistical 
properties of a dataset, allowing for generalizations over unseen examples. In the 
same setting, deduction is the neural computation of output values as a response to 
input values (stimuli from the environment) given a particular set of weights. Such 
network computations have been shown equivalent to a range of temporal logic 
formalisms [10]. Based on this approach the agent architecture of our model can be 
seen as a Neural Symbolic Cognitive Agent (NSCA). In our model, the agent 
architecture uses temporal logic as theory T and a Restricted Boltzmann Machine 
(RBM) as neural network N. A RBM is a partially connected neural network with two 
layers, a visible V and a hidden layer H, and symmetric connections W between these 
layers [11].  

A RBM defines a probability distribution P(V=v, H=h) over pairs of vectors v and 
h encoded in these layers, where v encodes the input data in binary or real values and 
h encodes the posterior probability P(H | v). Such a network can be used to infer or 
reconstruct complete data vectors based on incomplete or inconsistent input data and 
therefore implement an auto-associative memory. It does so by combining the 
posterior probability distributions generated by each unit in the hidden layer with a 
conditional probability distribution for each unit in the visible layer. Each hidden unit 
constrains a different subset of the dimensions in the high-dimensional data presented 
at the visible layer and is therefore called an expert on some feature in the input data. 
Together, the hidden units form a so-called “Products of Experts” model that 
constrains all the dimensions in the input data.  

4 The Cognitive Model and Agent Architecture 

The Neural-Symbolic Cognitive Agent (NSCA), depicted in figure 1, uses a Recurrent 
Temporal Restricted Boltzmann Machine (RTRBM) to encode prior knowledge, 
reason with this knowledge (deduction), infer beliefs about observations (abduction) 
and learn new knowledge from observations (induction) [12]. In this paper we will 
proof that the model can encode symbolic rules R, in the form of temporal logic 
clauses, as a joint probability distribution on hypotheses H (represented by the hidden 
units) and beliefs B (represented by the visible units), and that the model is able to 
encode temporal relations between hypotheses. The latter is possible due to recurrent 
connections between hidden unit activations at time t and the activations at time t-1, 
see [13]. 

Deduction in the RTRBM is similar to Bayesian inference, where for all 
hypotheses H the probability is calculated that the hypotheses are true given the 
observed beliefs b and the previously applied hypotheses Ht-1 (i.e. P(H|B=b,Ht-1)). 
From this posterior probability distribution the RTRBM selects the most likely 
hypotheses h using random Gaussian sampling, i.e. h ~ P(H|B=b,Ht-1). Via abduction 
the RTRBM then infers the most likely beliefs based on h by calculating the 
conditional probability (i.e. P(B|H=h)). The differences between the observed and 
inferred beliefs are then used by the NSCA to determine the implications of the 
applied hypotheses.  
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Fig. 1. Neural-Symbolic Cognitive Agent Architecture. 

 
Induction of new knowledge can be obtained by using the difference to improve 

the hypotheses about the observed beliefs. It does so by updating the weights in the 
RTRBM using Contrastive Divergence and Backpropagation-Through-Time [13]. 

The NSCA architecture also enables the modelling of higher-order temporal 
relations using the probabilities on hypotheses (depicted as the current state of ‘mind’ 
in figure 1) of lower-level NSCAs as observations. Such a layered network of NSCAs 
is called a Deep Belief Network (or Deep Boltzmann Machine when RBMs are used) 
and are in theory capable of learning and reasoning with first-order logic [14].  

5 Temporal Knowledge Representation 

The symbolic rules R, encoded in the RTRBM, are typically in the form of temporal 
logic clauses that describe equivalences between hypotheses and beliefs over time. 
For example, H1 ↔ B1 ∧ Β3 ∧ •H1 denotes that hypothesis H1 holds at time t if and 
only if beliefs B1 and B3 hold at time t and hypothesis H1 holds at time t-1, where we 
use the previous time temporal logic operator •  to denote t-1. We consider a broad set 
of past and future temporal logic operators as described in [10], that also describes a 
set of translations that relate a range of temporal logic formula having both past and 
future operators to a form having only the previous time operator. This enables a 
range of temporal logic formula to be encoded in and extracted from a RTRBM as 
described in the following algorithms and theorem. 
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Extraction Algorithm: Based on [15] we can extract a temporal logic program for R 
from a RTRBM N by finding the states of N that lower the total energy in its energy 
function. This means finding the states that maximize the likelihood of each clause r 
in R encoded in N. Assuming N is stable we can extract these states by assuming the 
hypothesis related to r, denoted by Hr, is true and then infer the related beliefs b and 
previous time formula ht-1 from the RTRBM using random Gaussian sampling of the 
conditional probability distribution (i.e. ∀r ∈ R: br ~ P(B |Hr) and hr

t-1 ~ P(Ht-1|Hr)). 
Similar to Pinkas, we calculate a confidence parameter cr to denote the strength of 

the equivalence in each clause r. This confidence parameter is based on the notion of 
Bayesian credibility [16] and calculated in a similar way (see Eq. 4). 

If we do this for all clauses, we can construct a temporal logic formula P using the 
following equations (where k is the number of beliefs, m the number of hypotheses 
and wij is the weight of the connection between the related visible units and hidden 
units in the RTRBM): 
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The literals for the beliefs, denoted by φj
(i), are calculated using Eq. 2 and depend 

on the weight wij of the connection between the hidden unit that represents hypothesis 
Hj and the visible unit that represents belief Bi. A negative weight will increase the 
probability of Hj when we decrease the value of Bi. So all values for belief Bi less or 
equal to bj(i) will increase the probability of hypothesis Hj. The inverse applies to a 
positive weight. When the weight is zero a belief has no influence on the hypothesis 
and can be left out. The previous time literals for the hypotheses, denoted by ρj

(i), are 
calculated using Eq. 3 and use the temporal operator ●. Notice that the previous time 
literals do not use equality operators, since hr

t-1 is always sampled from the binary 
stochastic hidden units, whereas, beliefs br are sampled from the continues stochastic 
visible units and therefore use equality operators to describe restrictions in the 
continuous data for which the clause applies. 
 
Encoding Algorithm: The extraction algorithm above shows that temporal logic 
clauses can be extracted from the RTRBM efficiently. Encoding these clauses is the 
dual of the extraction algorithm, i.e. for each clause r in R; (i) add a hidden unit to the 
RTRBM to represent the hypothesis Hr in the clause and for each belief literal Bi in 
the clause, add a visible unit, (ii) randomize the weights connecting the visible and 
hidden units, and (iii) minimize the difference between P(Hr | B=br, Ht-1=hr

t-1) and 
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confidence cr of the clause, and the differences between br and P(B  | Hr=cr) and hr
t-1 

and P(Ht-1  | Hr=cr) by applying the contrastive divergence algorithm [13]. 
 
Theorem: For any temporal logic program P there exists a RTRBM N such that N 
computes P.  
 
Proof: The soundness of the encoding of temporal formulas w.r.t. a temporal logic 
programming fixed-point semantics is shown in [10]. For each rule of the form in Eq. 
1, assume that a first time point t=0 exists without loss of generality. Given arbitrary 
initial values for the ●α formulas, we have that the computation of P in the recurrent 
network converges to a least fixed point [8]. Inductive step: at time point t, either N is 
stable with α activated in Hr or a value for α is inferred from B and Hr

t-1. At time 
point t+1, from the encoding algorithm, ●α will be activated in Hr

t-1 with arbitrary 
confidence level c assuming minimization of the contrastive divergence [13]. This 
completes the proof. ■   

6 Experiments and Results 

Several experiments have been conducted with the NSCA in various real-world 
applications. For example, the NSCA has been used to learn relations between 
observed data from a driving simulator (e.g. positions and orientations of vehicles, 
gear, steering wheel angle, etc.) and high-order driving skills (e.g. safe, social and 
economic driving) [12]. Another application was the recognition of human behaviour 
(e.g. fall, chase, exchange, jump, etc.) in video based on low-level visual features (e.g. 
bounding box properties of detected objects) [17]. Results of these experiments have 
shown that the NSCA is capable of learning meaningful temporal relations from 
observation and extract these relations in symbolic form.  

7 Conclusions and Future Work 

The cognitive model and agent architecture presented in this paper offer an effective 
approach that integrates symbolic reasoning and neural learning in a unified model 
and has been successfully applied in several real-world applications. The approach 
allows the modelled agent to learn rules about observed data in complex, real-world 
environments. Learned behaviour can be extracted to update existing knowledge for 
validation, reporting and feedback. Furthermore the approach allows prior knowledge 
to be encoded in the model and deals with uncertainty in real-world data.  

Future work includes research on using Deep Belief Networks [14] to deal with 
first-order logic and “Direction of Fit” to perform various forms of action planning 
and selection.  

In summary, we believe that our work provides an integrated model for knowledge 
representation, learning and reasoning which may indeed lead to realistic 
computational cognitive agent models, thus answering the challenges put forward in 
[1], [7]. 
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