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Abstract. Linear Quadratic Gaussian (LQG) control has a known ana-
lytical solution [1] but non-linear problems do not [2]. The state of the art
method used to find approximate solutions to non-linear control problems
(iterative LQG) [3] carries a large computational cost associated with
iterative calculations [4]. We propose a novel approach for solving non-
linear Optimal Control (OC) problems which combines Reinforcement
Learning (RL) with OC. The new algorithm, RLOC, uses a small set of
localized optimal linear controllers and applies a Monte Carlo algorithm
that learns the mapping from the state space to controllers. We illustrate
our approach by solving a non-linear OC problem of the 2-joint arm oper-
ating in a plane with two point masses. We show that controlling the arm
with the RLOC is less costly than using the Linear Quadratic Regulator
(LQR). This finding shows that non-linear optimal control problems can
be solved using a novel approach of adaptive RL.

Keywords: Reinforcement Learning, non-linear Optimal Control, lo-
cally linear approximations, Linear Quadratic Regulator, robotic arm.

1 Introduction

Optimal Control (OC) theory aims to find a control law which would manipulate
a dynamical system while minimizing a cost associated with that system. Non-
linear OC deals with systems involving non-linear dynamics and is known to
be the most difficult area of the control theory [5]. Difficulties in solution of
Hamilton-Jacobi-Bellman partial differential equation for this class of problems
[2] resulted in use of iterative methods which yield approximate solutions.

Main methods include: Receding Horizon Control (RHC) [6], Control Lya-
punov Functions (CLFs) [7], Differential Dynamic Programming (DDP) [8], [9],
Iterative Linear Quadratic Regulator (iLQR) [10] and Iterative Linear Quadratic
Gaussian control (iLQG) [3]. The CLF method can lack stability unless it fits
closely with the value function and RHC can act suboptimally. The DDP, iLQR
and iLQG involve iterative calculations and are computationally costly.

We propose an alternative general method where the adaptive properties of
Reinforcement Learning (RL) are combined with the power of OC. This method,
RLOC, would be applicable in many different fields as long as the system dy-
namics and costs can be formally stated or approximated.
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RL involves an agent that interacts with the world through actions and
receives corresponding rewards [11] thus improving the agent’s behaviour. RL
problems that satisfy the Markov Property are called Markov Decision Processes
(MDPs). An MDP represents a framework used to define control problems.

2 Problem Formulation

2.1 Linear Optimal Control

The Linear Quadratic Regulator (LQR) control has a closed form solution [12].
Its dynamics are linear in x and costs are assumed to be quadratic. The deter-
ministic linear optimal control problem has the following form

xk+1 = Axk +Buk (1)

where x is the state vector, u is the control vector, A is the system matrix acting
on the state vector and B is the control gain matrix acting on the control vector.

The continuous system dynamics ẋ = f(x,u), where ẋ is the first derivative
of the state vector with respect to time, can be represented in discrete form
yielding the update rule (Forward Euler)

xk+1 − xk

∆t
= f(xk,uk)

xk+1 = xk +∆tf(xk,uk)

where k is the step number.
The total cost, J , is the overall cost, accumulated over finite horizon through

incremental (Jk) and final (Jn) cost rates
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where n is the number of steps, R is the control cost matrix, Q is the state cost
matrix and Qf is the final state cost matrix.

The control update is linear in x and is calculated using

uk = −Lkxk (3)

where Lk = ((R + BTVk+1B)−1BTVk+1A) is the feedback gain matrix and
Vk = Q + ATVk+1A − ATVk+1B(R + BTVk+1B)−1BTVk+1A is the cost to go
function. The L matrix does not depend on x and therefore can be computed
offline.

2.2 Non-Linear Optimal Control

The deterministic non-linear optimal control problem we choose to study has
the following general form

xk+1 = A(xk)xk +B(xk)uk (4)

It does not have an analytical solution [2] and approximate solutions are
computed using iterative methods.
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2.3 Proposition

Traditional OC methods used for solving non-linear problems need as many lo-
cally linear controllers as there are incremental number of steps. We propose
approximating non-linear OC systems by using a reduced number of linear op-
timal controllers which are joined together for global use with a RL algorithm.

Our problem formulation operates in two spaces: Formulation Space (ϕ1)
and Process Space (ϕ2). The ϕ1 describes every aspect of the OC problem and
incorporates the Formulation States (FS). The ϕ2 describes every aspect of the
Markov Decision Process and incorporates the Process States (PS).

The non-linear control problem is converted into a finite MDP problem by:

1 Discretizing the continuous FS (i.e. variable x) into a finite number of equal
discrete states that correspond to the PS {s1, s2, ..., sn}.

2 Using a Linear Quadratic Regulator (LQR) to obtain a small set of localized
optimal linear controllers, specifically the feedback gain matrices L1, L2, ..., Ln.

3 Using a RL algorithm to learn the mapping from the PS to controllers (i.e.
optimal way of combining localized linear controllers).

3 Application: Modelling Human Arm

Human motor coordination is well predicted by optimal control [13] and the ap-
proximations to non-linear human arm dynamics have been extensively studied
[3], [10], [14], [15]. We illustrate RLOC by solving a non-linear optimal control
problem of a simplified human arm model (Fig. 1).

Fig. 1. Simulated arm representation where θ1 is the angle of the shoulder, θ2 is the
angle of the elbow, both defined on the [0◦, 180◦] continuous interval, l1 is the length
of the first link, l2 is the length of the second link, m1 and m2 are the positions of the
weight on each respective link. Arm is allowed to move in a horizontal plane.

The forward arm dynamics are described by the equation

θ̈ =M(θ)−1(τ − C(θ, θ̇)− Bθ̇) (5)
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where θ ∈ R2 is the joint angle vector (shoulder: θ1, elbow θ2), M(θ) is a PD
symmetric inertia matrix, C(θ, θ̇) ∈ R2 is a vector centripetal and Coriolis forces,
B ∈ R2×2 is the joint friction matrix and τ ∈ R2 is the joint torque (defined to
be the control u = τ) [14].

The FS is defined as a 4D vector containing joint angles and their velocities

x = (θ1, θ2, θ̇1, θ̇2)T (6)

The state dynamics are described as the first derivative of the state vector, ẋ

ẋ = f(x,u) = (θ̇1, θ̇2, θ̈1, θ̈2)T (7)

3.1 Simulation

The arm joint angles are discretized into 36 PS states. Six feedback gain matrices,
corresponding to RL actions, are obtained by linearizing the arm dynamics using
LQR approach. The linearizations are performed around equally spaced points
in the ϕ1 and vary in elbow angle only. This is due to the fact that non-linearity
of the arm depends only on the elbow angle (Fig. 2).

Fig. 2. The x − axis is the shoulder angle, y − axis is the elbow angle. The squares
show PS and the black circles point to locations of feedback gain matrices obtained
by linearization of arm dynamics. The dashed line shows the ϕ1 along which the L
matrices are equal, this is true for any such line parallel to the x− axis.

We choose an epsilon-greedy on-policy Monte Carlo algorithm [11]. It learns
from sampling sequences of states s, actions a and immediate rewards (costs) r.
A full sample path from a starting to an absorbing state is called a trace, Γ , we
use 20000 traces. Optimal policy is learnt for the trajectory of the arm from the
center of any of the 36 states to a target.

Optimal Policy is learnt using the following steps:
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1 Initialize a deterministic policy having equal probability of picking any action
(linearized controller).

2 For each trace: a) pick a random starting Process State and b) chose current
action corresponding to that Process State (determined by the policy).

3 Get a trace: a) start controlling the arm using LQR, b) once enter a new
Process State record the {s,a,r} triplet, c) pick a new controller at random,
d) repeat until reach the target (i.e. end of obtaining a trace).

4 Examine {s,a,r} triplets to calculate Action-Value Function Q. Improve the
Policy by altering probabilities of picking each action in each state. If the
Policy yields lower trace cost, store it as the Optimal Policy.

5 Repeat steps 2. to 4. until obtain a specified number of traces (in our case
20000).

3.2 Results and Discussion

The results show that using RLOC algorithm to optimally control the arm from
any of the 36 states to an arbitrary target of (40◦, 10◦) results in either equal
to or better performance than the LQR (Fig. 3). The results are presented as

’relative differences’ in cost using the following formula (JLQR - JRLOC )

|JLQR|
100%.

This is necessary since some starting states are further away from the target and
hence the acquired cost would be higher simply due to the distance travelled.
Negative values indicate that RLOC is less costly.

Fig. 3. Relative cost differences in % between the cost of RLOC and LQR (both cal-
culated using J in equation (2). Each square corresponds to a PS, numbered as in
(Fig 2) and the target is marked by a circle. The following cost matrices were used:
R = diag[1 1], Q = diag[1.5 1.5 0 0] and Qf = diag[3000 3000 300 300].



8 Ekaterina Abramova, Daniel Kuhn, Aldo Faisal

The total costs accumulated during the MC simulation are shown in (Fig. 4).
The algorithm ’learns’ throughout the simulation. This can be seen by the de-
crease in the cost size experienced at the end of each trace for each of the starting
states (picked at random at the beginning of a trace). The agent learns a better
policy with each sampled trace which results in decreasing cost size as the sim-
ulation progresses. Note that the graph has distinctive reduction in the worst
cost experienced for each starting state and these transform into lines as the
algorithm learns. Each line represents minimal possible cost that could be in-
curred by controlling the arm from each starting state to the target under RLOC
algorithm.

Fig. 4. Plot of the total cost of each trace vs. the trace number (20000 traces obtained).
Each starting Process State cost variability is marked with a different line. As the
simulation progresses, the variability of the maximum cost encountered by the learner
is reduced. Therefore this figure demonstrates that the algorithm learns to use better
(less costly) controllers for each Process State.

3.3 Conclusions

We presented the theoretical formulation, supported by a practical example, for
the novel approach of solving non-linear optimal control problems by combining
RL with OC to produce a new algorithm RLOC. The use of the RL agent
is advantageous since the learner is able to explore a large amount of states,
experiencing various state-action scenarios. This allows the learner to pick the
control policy which provides it with the most overall reward (least cost).

We illustrated the proposed algorithm with a model of the human arm move-
ment, where a combination of LQR control and epsilon greedy on policy Monte
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Carlo method was used. The algorithm proved to be able to control the arm
from the moment of initialization. This allows a trade off between speed and
optimality, which may be desirable in practice for on-line computations. The
algorithm was able to reach the desired target in a smooth manner with less
accumulated cost than the LQR. This finding is significant because it is the first
time it has been shown that RL can be combined with OC to produce better
results than using LQR or RL alone. We have therefore taken a step closer to
improving our current ability to control complicated non-linear systems.

An important aspect of this research is that it can be applied to many real
life problems (such as drug delivery, space exploration, algorithmic trading, air
traffic control and robotic control).
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